
MCA-103
OPERATING SYSTEM

PREFACE

Dear Reader,

It is a privilege to present this comprehensive collection of RTU MCA Semester
Examination Notes, designed to cover the complete syllabus with clarity and
academic accuracy. Every concept, definition, explanation, and example has been
organized to support thorough understanding and effective exam preparation.

The purpose of these notes is to simplify complex topics and provide a reliable study
resource that can assist in both detailed learning and quick revision. Continuous effort
has been made to ensure correctness and relevance; however, learning grows when
readers engage, question, and explore further.

May these notes serve as a strong academic foundation and contribute meaningfully
to your preparation and future growth.

Warm regards,
Virendra Goura
Author
www.virendragoura.com

DISCLAIMER

This e-book has been created with utmost care, sincere effort, and extensive
proofreading. However, despite all attempts to avoid mistakes, there may still be some
errors, omissions, or inaccuracies that remain unnoticed.
This e-book is issued with the understanding that neither the author nor the publisher
shall be held responsible for any loss, damage, or misunderstanding arising from the
use of the information contained within.
All content provided is for educational and informational purposes only.

© 2025 — All Rights Reserved.

No part of this e-book may be reproduced, copied, scanned, stored in a retrieval
system, or transmitted in any form—whether electronic, mechanical, digital, or
otherwise—without prior written permission from the author/publisher.

Any unauthorized use, sharing, or distribution of the material is strictly prohibited and
may lead to civil or criminal liability under applicable copyright laws.

http://www.virendragoura.com/

MCA-103 Operating System
Unit-1

Introduction: Definition and types of operating systems, Batch Systems, multi programming,
timesharing, parallel, distributed and real-time systems, Operating system structure, Operating
system components and services, System calls, system programs, system boot.

Process Management: Process concept, Process scheduling, Cooperating process, Threads,
Interprocess communication, CPU scheduling criteria, Scheduling algorithms, Multiple-
processor scheduling and Algorithm evaluation.

Unit-2

Process Synchronization and Deadlocks: The Critical-Section problem, synchronization
hardware, Semaphores, Classical problem of synchronization, Critical regions, Monitors,
Deadlock-system model, Characterization, Deadlock prevention, Avoidance and Detection,
Recovery from deadlock, Combined approach to deadlock handling.

Storage Management: Memory Management -Logical and Physical Address Space, Swapping,
Contiguous Allocation, Paging, Segmentation with paging, Virtual Memory, Demand paging and
its performance, Page replacement algorithms, Allocation of frames, Thrashing, Page Size and
other considerations.

Unit-3

Introduction to concept of Open Source Software: Introduction to Linux, Evolution of
Linux, Linux vs. UNIX, Different Distributions of Linux, Installing Linux, Linux Architecture,
Linux file system (inode, Super block, Mounting and Unmounting), Essential Linux Commands
(Internal and External Commands), Kernel, Process Management in Linux, Signal Handling,
System call, System call for Files, Processes and Signals.

Unit-4

Shell Programming: Shell Programming - Introduction to Shell, Various Shell of Linux, Shell
Commands, I/O Redirection and Piping, Vi and Emacs editor, Shell control statements,
Variables, if-then-else, case-switch, While, Until, Find, Shell Meta characters, Shell Scripts,
Shell keywords, Tips and Traps, Built in Commands, Handling documents, C language
programming, Prototyping, Coding, Compiling, Testing and Debugging, Filters.

Unit-5

Linux System Administrations: File listings, Ownership and Access Permissions, File and
Directory types, Managing Files, User and its Home Directory, Booting and Shutting down
(Boot Loaders, LILO, GRUB, Bootstrapping, init Process, System services).

UNIT - 1

Introduction: Definition and types of operating systems, Batch Systems, multi programming,
timesharing, parallel, distributed and real-time systems, Operating system structure, Operating
system components and services, System calls, system programs, system boot.

Process Management : Process concept, Process scheduling, Cooperating process, Threads,
Interprocess communication, CPU scheduling criteria, Scheduling algorithms, Multiple-
processor scheduling and Algorithm evaluation.

Definition

An Operating System (OS) is a system software that acts as a bridge between the user
and the computer hardware.
It manages the execution of application programs and controls the operations of computer
hardware.

Formally:

An operating system is a program that manages the computer hardware, provides a basis for
application programs, and acts as an intermediary between the computer user and the
computer hardware.

The OS provides a user-friendly environment to execute programs efficiently.

Objectives of Operating System

1. Convenience: Makes the computer system easy to use.

2. Efficiency: Improves the system performance and utilizes hardware efficiently.

3. Ability to Evolve: Should be flexible for hardware and software advancements.

4. Resource Management: Manages resources like CPU, memory, devices, and data
efficiently.

5. Security & Protection: Prevents unauthorized access and ensures data integrity.

 Functions of Operating System

Function Description Example

Process
Management

Handles process creation, scheduling, synchronization,
and termination. fork(), wait()

Memory
Management

Allocates and deallocates memory spaces to
processes.

Virtual memory,
paging

File Management Manages file operations like creation, deletion, read/
write. FAT32, NTFS

Device
Management Manages I/O devices through device drivers. Keyboard, printer

Storage
Management Organizes data storage and access on disks. Disk scheduling

Security and
Protection Protects data from unauthorized access. Authentication

Advantages of Operating System

1. Efficient resource utilization

2. Provides convenient user interface

3. Ensures system security

4. Enables multitasking

5. Handles errors and recovers from failures

2. TYPES OF OPERATING SYSTEMS

1. Batch Operating System

Jobs with similar needs are grouped together in batches and executed without user interaction.

How it works:

1. Users submit jobs to the operator.

2. Operator groups them into batches.

3. The OS executes jobs one after another.

Example: IBM mainframes in the 1960s.

Advantages:

• High throughput.

• Reduced idle time.

Disadvantages:

• No direct user interaction.

• Debugging errors is difficult.

• Long waiting time.

2. Multiprogramming Operating System

More than one program resides in memory and CPU switches
among them for better utilization.

How it works:
When one program waits for I/O, another program uses the
CPU.

Example: UNIX, Linux.

Error Detection Detects hardware or software errors. Parity checks

User Interface Provides CLI (Command Line Interface) or GUI. Windows Explorer,
Shell

Advantages:

• Better CPU utilization.

• Reduced idle time.

• Efficient performance.

Disadvantages:

• Complex memory management.

• Requires large memory.

3. Time-Sharing Operating System

Each user gets a small unit of CPU time (time slice). The CPU switches rapidly among users.

Objective:
To provide interactive computing and minimize response time.

Example: UNIX Time-Sharing System.

Advantages:

• Better response time.

• User interaction supported.

Disadvantages:

• High overhead for context switching.

• Requires complex scheduling.

4. Parallel Operating System

Multiple processors work together to execute processes simultaneously.

Used in: Scientific computations, simulations, supercomputers.

Advantages:

• High performance.

• High reliability.

Disadvantages:

• Complex design and communication.

• Expensive hardware.

Example: Windows HPC, Linux clusters.

5. Distributed Operating System

A collection of independent computers appear to the users as a single coherent system.

Example: Amoeba, LOCUS, Sprite.

Advantages:

• Resource sharing.

• Load balancing.

• Fault tolerance.

Disadvantages:

• Complex communication.

• Security issues.

6. Real-Time Operating System (RTOS)

Used for applications where the system must respond to inputs instantly.

Types:

1. Hard Real-Time OS:
Strict timing constraints (e.g., missile systems, air traffic control).

2. Soft Real-Time OS:
Missed deadlines are tolerable (e.g., multimedia systems).

Example: VxWorks, QNX, RTLinux.

Characteristics:

• Predictable response.

• Task prioritization.

• Minimal latency.

3. OPERATING SYSTEM STRUCTURE

An Operating System (OS) structure defines how the various components of an OS (like
the kernel, user interface, and hardware drivers) are organized and how they communicate
with each other.

Think of it as the "blueprint" for the software. If the OS were a building, the structure would
determine where the foundation, plumbing, and rooms go.

Here are the most common OS structures explained:

A. Monolithic Structure

In this design, the entire operating system runs as a single, large program in the kernel
space. It is like a massive Swiss Army knife where every tool is attached to the same handle.

• How it works: All services (file management, memory, process scheduling) are packed
into one large file.

• Pros: Extremely fast because components can talk to each other directly without
barriers.

• Cons: If one part crashes (e.g., a bad driver), the entire system can crash (Blue Screen
of Death).

B. Layered Structure

This approach divides the OS into distinct layers. Each layer can only communicate with the
layers immediately above and below it.

• Layer 0: Hardware (bottom).

• Layer N: User Interface (top).

• Pros: easy to debug. If an error occurs in Layer 2, you know you don't need to check
Layer 4.

• Cons: Can be slower because data has to pass through many steps to get from the
user to the hardware.

C. Microkernel Structure

This design tries to keep the kernel as small ("micro") as possible. It removes non-essential
services (like file systems and device drivers) from the kernel and runs them in user space
(like normal programs).

• How it works: The kernel only handles the absolute basics: communication and CPU
scheduling. If you want to save a file, the kernel sends a message to a "File Server"
program running in user space.

• Pros: Very stable. If a driver crashes, the kernel keeps running, and you can just
restart the driver.

• Cons: Slower performance due to the constant "message passing" between the kernel
and user programs.

D. Hybrid Structure (Modular)

Most modern operating systems (like Windows and macOS) use a hybrid approach. They
look like a Monolithic kernel (for speed) but allow you to load and unload specific parts
(modules) on the fly, like a Microkernel.

• How it works: You have a main kernel, but you can plug in "modules" (like a USB
driver) only when needed, without restarting the system.

4. OPERATING SYSTEM COMPONENTS

An Operating System is like a manager that handles different departments (components) to
keep the computer running smoothly. Each component is responsible for a specific task, like
managing the CPU, memory, or files.

Here is a simple text diagram showing how these components sit between the User and the
Hardware:

1. Process Management

◦ Function: The OS manages
" p r o c e s s e s " (r u n n i n g
programs). It decides which
process gets the CPU and for
how long.

◦ Key Tasks: Creating/deleting
processes, pausing/resuming
t h e m , a n d h a n d l i n g
synchron iza t ion (so two
processes don't crash into
each other).

2. Memory Management (RAM)

◦ Function: Manages the primary memory (RAM).

◦ Key Tasks: Keeps track of which parts of memory are currently being used and
by whom. It allocates memory when a program starts and frees it when the
program ends.

3. File Management

◦ Function: Organizes data into files and directories (folders).

◦ Key Tasks: Creating, deleting, reading, and writing files. It maps these "files"
onto the physical hard drive.

4. I/O Device Management

◦ Function: Manages input/output devices like keyboards, mice, printers, and
screens.

◦ Key Tasks: It uses Device Drivers to talk to the hardware. It handles
"buffering" (temporarily storing data) so the CPU doesn't have to wait for a slow
printer.

5. Secondary Storage Management

◦ Function: Manages the hard disk or SSD (permanent storage).

◦ Key Tasks: Since Main Memory (RAM) is volatile (data is lost when power is
off), the OS manages the disk to store data permanently. It also manages free
space and disk scheduling.

6. Network Management

◦ Function: Manages communication between different computers.

◦ Key Tasks: Handles protocols (like TCP/IP) to send data across a network or the
internet.

7. Security & Protection

◦ Function: Protects the system from unauthorized access.

◦ Key Tasks: Using passwords (Authentication) and ensuring one user's program
cannot interfere with another user's data (Protection).

8. Command Interpreter System (User Interface)

◦ Function: The interface between the user and the OS.

◦ Key Tasks: It reads commands from the user and executes them. This can be a
CLI (Command Line Interface like cmd) or a GUI (Graphical User Interface like
Windows).

5. OPERATING SYSTEM SERVICES

1. Program Execution – Execute and terminate programs.

2. I/O Operations – Read/write data from/to devices.

3. File System Manipulation – File access and management.

4. Communication – Between processes or systems.

5. Error Detection – Identify and handle system errors.

6. Resource Allocation – Distribute CPU, memory, devices.

7. Accounting – Keep track of usage statistics.

8. Protection and Security – Prevent unauthorized access.

6. SYSTEM CALLS

System calls are interfaces between user programs and OS kernel functions.

Example:
A user program cannot directly perform I/O; it requests the OS using system calls like read(),
write(), etc.

Types of System Calls:

Category Example

Process Control fork(), exec(), exit()

File Management open(), close(), read(), write()

Device Management ioctl(), read()

Information
Maintenance getpid(), alarm()

Communication send(), receive()

7. SYSTEM PROGRAMS

System Programs are utility programs provided by the Operating System that help users and
programmers interact with the computer system. They do not control hardware directly but
use OS services to perform tasks efficiently.

1. File Management

• Handle creation, deletion, copying, renaming, and organization of files and directories.

• Manage file permissions and attributes.

Examples: File Explorer, ls, cp, rm

2. Status Information

• Provide information about system performance and status.

• Display CPU usage, memory usage, date, and time.

Examples: Task Manager, top, ps

3. File Modification

• Create and modify the contents of files.

• Used mainly for editing text and program files.

Examples: Notepad, vi, nano

4. Programming Language Support

• Provide tools for program development and execution.

• Include compilers, interpreters, and assemblers.

Examples: GCC compiler, Python interpreter, Java compiler

5. Program Loading and Execution

• Load programs into memory and start their execution.

• Manage linking and execution of programs.

Examples: Loader, Linker, Command Shell

6. Communication Programs

• Allow communication between processes and systems.

• Support data transfer and remote access.

Examples: Web browsers, Email clients, FTP, SSH

7. Background Services (Daemons)

• Run continuously in the background to support system operations.

Examples: Print spooler, Network services, System logging

8. SYSTEM BOOT

Booting is the process of starting the computer and loading the operating system into
main memory.

Steps:

1. POST (Power-On Self Test) – Tests hardware components.

2. Bootstrap Loader – Loads OS kernel from disk.

3. Kernel Initialization – Initializes system and drivers.

4. System Processes Start – Background services start.

5. User Login Prompt – Ready for user operations.

PROCESS MANAGEMENT:

1. PROCESS CONCEPT

A process is a program in execution. It is an active entity compared to a passive program
stored on disk.

Process includes:

• Program code (text section)

• Program counter

• Stack (temporary data)

• Heap (dynamic memory)

• Data section (global variables)

Process States

1. New: Process being created.

2. Ready: Waiting to be assigned to CPU.

3. Running: Process currently using CPU.

4. Waiting/Blocked: Waiting for an event (I/O completion).

5. Terminated: Execution completed.

State Diagram:

2. PROCESS SCHEDULING

The scheduler decides which process runs next.

Types:

1. Long-Term Scheduler: Chooses which processes are loaded into memory.

2. Short-Term Scheduler: Chooses next process for CPU.

3. Medium-Term Scheduler: Swaps processes between memory and disk.

Scheduling Queues

1. Job Queue: All processes in the system.

2. Ready Queue: Processes waiting for CPU.

3. Device Queue: Processes waiting for I/O device.

3. CPU SCHEDULING CRITERIA

CPU Utilization:
Percentage of time the CPU remains busy executing processes. Higher CPU utilization indicates
efficient use of processor resources and minimal idle time.

Throughput:
Number of processes completed by the CPU per unit time. Higher throughput means more
work is done in less time.

Turnaround Time:
Total time taken by a process from arrival to completion.
(Turnaround Time = Completion Time − Arrival Time)

Waiting Time:
Total time a process spends waiting in the ready queue before execution.
(Waiting Time = Turnaround Time − Burst Time)

Response Time:
Time between process submission and the first response from the CPU, especially important
for interactive systems.

4. CPU SCHEDULING ALGORITHMS

CPU Scheduling

CPU Scheduling is an operating system technique used to decide which process from the ready
queue should be allocated the CPU next, so that system performance, efficiency, and
multitasking capability are improved.

Need for CPU Scheduling

CPU scheduling is required because multiple processes compete for the CPU simultaneously.
Efficient scheduling ensures fair CPU allocation, reduces waiting and turnaround time, improves
response time, and prevents the CPU from remaining idle.

Types of CPU Scheduling

CPU scheduling is classified into:

1. Primitive (Preemptive) Scheduling

2. Non-Primitive (Non-Preemptive) Scheduling

Primitive scheduling allows interruption of a running process, whereas non-primitive scheduling
does not allow interruption once execution starts.

ALGORITHMS

1. First Come First Served (FCFS)

FCFS is the simplest CPU scheduling algorithm in which processes are executed strictly in the
order of their arrival in the ready queue. It is easy to implement but may cause the convoy
effect.

Type:
Non-Primitive (Non-Preemptive)

Numerical Example:

Gantt Chart:

Waiting Time:
WT(P1)=0, WT(P2)=4, WT(P3)=6

Average Waiting Time:
(0 + 4 + 6) / 3 = 3.33 units

2. Shortest Job First (SJF)

SJF selects the process having the smallest CPU burst time for execution. It provides the
minimum average waiting time but requires prior knowledge of CPU burst time.

Types:

• Non-Primitive SJF

• Primitive SJF (SRTF)

Numerical Example (Non-Preemptive):

Gantt Chart

Process Arrival Time Burst Time

P1 0 5

P2 1 3

P3 2 8

Process Arrival Time Burst Time

P1 0 6

P2 1 2

P3 2 4

Average Waiting Time:
(0 + 5 + 6) / 3 = 3.67 units

3. Shortest Remaining Time First (SRTF)

SRTF is the preemptive version of SJF in which the CPU is always allocated to the process with
the shortest remaining execution time. It improves response time but increases context
switching.

Type:
Primitive (Preemptive)

Numerical Example:

Gantt Chart:

4. Priority Scheduling

In Priority Scheduling, each process is assigned a priority, and the CPU is allocated to the
process with the highest priority. Lower-priority processes may suffer from starvation.

Types:

• Primitive Priority Scheduling

• Non-Primitive Priority Scheduling

Numerical Example (Non-Preemptive):

(Lower number indicates higher priority)

Gantt Chart:

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

Process Burst Time Priority

P1 5 3

P2 3 1

P3 4 2

5. Round Robin (RR)

Round Robin scheduling assigns CPU to each process for a fixed time slice called time quantum
in a cyclic order. It is widely used in time-sharing systems.

Type:
Primitive (Preemptive)

Numerical Example:
Time Quantum = 2

Gantt Chart:

Average Waiting Time:
(6 + 6 + 4) / 3 = 5.33 units

6. Multilevel Queue Scheduling

This algorithm divides processes into multiple queues based on priority or process type. Each
queue follows its own scheduling algorithm, and movement between queues is not allowed.

7. Multilevel Feedback Queue Scheduling

Multilevel Feedback Queue Scheduling allows processes to move between queues based on
CPU usage. It prevents starvation and supports dynamic priority adjustment but is complex to
implement.

5. COOPERATING PROCESSES

Cooperating Processes are those processes that can affect or be affected by other
processes executing in the system.
Such processes require Inter-Process Communication (IPC) mechanisms to exchange data
and synchronize execution.

Processes can move between queues based on behavior and execution time.
Used in modern OS like Windows and Linux.

• Independent Processes: A process is independent if it cannot affect or be affected by
the other processes executing in the system. It does not share data with any other
process.

Process Burst Time

P1 5

P2 4

P3 2

• Cooperating Processes: A process is cooperating if it can affect or be affected by
other processes executing in the system. Clearly, any process that shares data with
other processes is a cooperating process.

Why do we need Cooperating Processes?

There are four principal reasons for providing an environment that allows process cooperation:

1. Information Sharing: Since several users may be interested in the same piece of
information (e.g., a shared file), we must provide an environment to allow concurrent
access to such information.

2. Computation Speedup: If we want a particular task to run faster, we can break it into
sub-tasks, each executing in parallel with the others. (Note: This speedup can be
achieved only if the computer has multiple processing elements, i.e., CPUs or I/O
channels).

3. Modularity: We may want to construct the system in a modular fashion, dividing the
system functions into separate processes or threads.

4. Convenience: Even an individual user may work on many tasks at the same time. For
instance, a user may be editing, listening to music, and compiling simultaneously.

6. INTER-PROCESS COMMUNICATION (IPC)

Cooperating processes require an IPC mechanism that will allow them to exchange data and
information. There are two fundamental models of IPC:

A. Shared Memory Model

In this model, a region of memory that is shared by cooperating processes is established.
Processes can then exchange information by reading and writing data to the shared region.

• Speed: Faster than message passing because memory access occurs at memory
speeds. System calls are required only to establish the shared memory region; once
established, no kernel assistance is needed.

• Conflict: Major issue is synchronization (ensuring two processes don't write to the
same place at the same time).

B. Message Passing Model

In this model, communication takes place by means of messages exchanged between the
cooperating processes.

• Mechanism: Two operations: send(message) and receive(message).

• Speed: Generally slower than shared memory because messages are usually
implemented using system calls (kernel intervention).

• Use Case: useful for exchanging smaller amounts of data and easier to implement for
distributed systems (e.g., chat programs).

7. THREADS

A thread is the smallest unit of execution in an operating system. It is also known as a
lightweight process because it consumes less memory and fewer system resources compared

to a process. A process may contain multiple threads, and each thread performs a specific task
within the same process.

Relationship Between Process and Thread

A process is a program in execution, whereas a thread is a single sequence of execution within
that process. All threads of a process share the same address space, code, data, heap
memory, and open files. However, each thread has its own program counter, stack, and
register set, which allows independent execution.

Need for Threads

Threads are used to improve system performance and responsiveness. In a multithreaded
environment, if one thread is waiting for an input/output operation, other threads can continue
execution. This results in better CPU utilization and faster program execution.

Components of a Thread

Each thread consists of a thread ID, program counter, register set, and stack. These
components help the thread to maintain its execution state independently from other threads.

Types of Threads

User-Level Threads

User-level threads are managed by user-level libraries, and the operating system kernel is not
aware of them. These threads are fast to create and manage. However, if one user-level thread
is blocked, the entire process may get blocked.

Kernel-Level Threads

Kernel-level threads are managed directly by the operating system. The kernel schedules each
thread independently, allowing true parallelism on multiprocessor systems. The main drawback
is higher overhead due to kernel involvement.

Advantages of Threads

Threads provide faster execution, improved responsiveness, efficient resource sharing, reduced
overhead, and better utilization of multi-core processors.

Disadvantages of Threads

Thread-based programming is complex and difficult to debug. Improper synchronization can
cause deadlock, starvation, and priority inversion.

8. MULTIPLE PROCESSOR SCHEDULING

Multiple Processor Scheduling is used in systems having more than one CPU, where the
operating system schedules processes across multiple processors to improve performance,
reliability, and parallel execution.

Need for Multiple Processor Scheduling

It is required to efficiently distribute processes among multiple CPUs, reduce execution time,
increase throughput, and fully utilize all available processors in multiprocessor systems.

Types of Multiple Processor Scheduling

1. Asymmetric Multiprocessing (AMP)

In asymmetric multiprocessing, one master processor handles all scheduling decisions, I/O
operations, and system tasks, while other processors execute user processes.

Example:
A single CPU assigns tasks to other CPUs.

Type:
Centralized scheduling approach.

2. Symmetric Multiprocessing (SMP)

In symmetric multiprocessing, all processors run the operating system scheduler and
share scheduling responsibilities equally.

Example:
Modern multicore systems like Linux-based servers.

Type:
Decentralized and balanced scheduling approach.

Advantages of Multiple Processor Scheduling

It increases system throughput, improves fault tolerance, supports parallel processing, and
enhances overall system performance in high-load and real-time environments.

Disadvantages of Multiple Processor Scheduling

It increases system complexity, synchronization overhead, and scheduling conflicts, especially
when shared resources are accessed simultaneously by multiple processors.

9. ALGORITHM EVALUATION

Algorithm Evaluation is the process of comparing and analyzing CPU scheduling
algorithms to determine their effectiveness based on performance criteria such as waiting
time, turnaround time, throughput, and CPU utilization.

Need for Algorithm Evaluation

It helps in selecting the most suitable scheduling algorithm for a system based on workload,
performance goals, and system requirements.

Methods of Algorithm Evaluation

1. Deterministic Modeling

Deterministic modeling evaluates scheduling algorithms using mathematical calculations
with fixed input values.

Example:
Calculating average waiting time for given processes.

Type:
Analytical evaluation method.

2. Queuing Model

Queuing model uses probabilistic arrival and service rates to analyze system performance
mathematically.

Example:
Modeling CPU as a server and processes as customers.

Type:
Statistical and mathematical method.

3. Simulation

Simulation involves creating a software model of the system and running scheduling
algorithms on simulated workloads.

Example:
Testing FCFS and Round Robin using simulated processes.

Type:
Practical and flexible evaluation method.

4. Implementation

Implementation evaluates scheduling algorithms by testing them on a real operating
system.

Example:
Implementing a scheduler inside Linux kernel.

Type:
Most accurate but costly evaluation method.

UNIT - 2

Process Synchronization and Deadlocks:
The Critical-Section problem, synchronization hardware, Semaphores , Classical problem of
synchronization, Critical regions, Monitors, Deadlock-system model, Characterization, Deadlock
prevention, Avoidance and Detection, Recovery from deadlock, Combined approach to deadlock
handling.
Storage Management: Memory Management –Logical and Physical Address Space,
Swapping, Contiguous Allocation, Paging, Segmentation with paging, Virtual Memory, Demand
paging and its performance, Page replacement algorithms, Allocation of frames, Thrashing,
Page Size and other considerations.

1. Process Synchronization

When multiple processes execute concurrently and share data, they must be synchronized to
ensure correct execution.
Process Synchronization is required to maintain data consistency and avoid race
conditions.

Race Condition

A race condition occurs when two or more processes access shared data simultaneously, and
the final result depends on the order of execution.

Example:
Two processes incrementing a shared counter variable may produce incorrect results if both
read and write simultaneously without synchronization.

2. The Critical Section Problem

A critical section is a part of the program where shared resources are accessed.
The Critical Section Problem is to design a protocol so that when one process is executing in
its critical section, no other process is allowed to execute in its critical section.

Structure of a Process

do {
 Entry Section → Request to enter critical section
 Critical Section → Access shared resources
 Exit Section → Release lock
 Remainder Section → Code outside the critical section
} while (true);

Requirements for a Good Solution

1. Mutual Exclusion: Only one process can enter the critical section at a time.

2. Progress: If no process is in critical section, one waiting process must be allowed to
enter.

3. Bounded Waiting: Each process gets a fair chance to enter within finite time.

3. Synchronization Hardware

Hardware provides atomic operations for synchronization.

Test-and-Set Instruction

A hardware instruction that checks and modifies a lock variable atomically.

Algorithm using Test-and-Set:

do {
 while (TestAndSet(lock));
 // Critical Section
 lock = false;
 // Remainder Section
} while (true);

Disadvantages:

• Busy waiting (CPU cycles wasted).

• May cause starvation.

Compare-and-Swap Instruction

Another atomic instruction that compares memory contents and swaps if condition matches.
Used in advanced multiprocessor systems for synchronization.

4. Semaphores

A Semaphore is a synchronization tool introduced by Edsger Dijkstra.
It is an integer variable used to control access to shared resources.

Types of Semaphores

1. Counting Semaphore: Integer value ≥ 0. Used to manage a pool of resources.

2. Binary Semaphore (Mutex): Value = 0 or 1. Used for mutual exclusion.

Semaphore Operations

Two atomic operations:

wait(S) or P(S):

wait(S):

 while S <= 0:
 wait;
 S = S - 1;

signal(S) or V(S):

signal(S):

 S = S + 1;

Example (Mutual Exclusion):

Semaphore mutex = 1;

Process Pi:
do {
 wait(mutex);
 // Critical Section
 signal(mutex);
 // Remainder Section
} while(true);

5. Classical Problems of Synchronization

These are famous problems used to understand process synchronization concepts.

a) Bounded Buffer (Producer-Consumer Problem)

• Producer generates items and puts them into a buffer.

• Consumer removes items from the buffer.

• Synchronization needed to avoid buffer overflow and underflow.

Solution using Semaphores:

Semaphore mutex = 1;
Semaphore empty = n;
Semaphore full = 0;

Producer:
do {
 produce_item();
 wait(empty);
 wait(mutex);
 insert_item();
 signal(mutex);
 signal(full);
} while(true);

Consumer:
do {
 wait(full);
 wait(mutex);
 remove_item();
 signal(mutex);
 signal(empty);
 consume_item();
} while(true);

b) Readers–Writers Problem

• Multiple readers can read simultaneously.

• Writers require exclusive access.

Goal: No data inconsistency when readers and writers operate together.

c) Dining Philosophers Problem

• Five philosophers sit at a round table and share forks.

• Each philosopher must pick up two forks to eat.

• Improper synchronization can lead to deadlock.

Solution: Use semaphores for forks; allow a philosopher to pick up forks only if both are
available.

6. Critical Regions

A critical region is a segment of code in which processes access shared variables.
The compiler ensures that only one process executes within a region at any time.

Used in high-level languages to simplify synchronization.

7. Monitors

A monitor is a high-level synchronization construct that contains shared variables,
procedures, and synchronization between processes.

Example:

monitor ProducerConsumer {
 condition full, empty;
 procedure produce() {
 if (buffer_full) wait(full);
 insert_item();
 signal(empty);
 }
 procedure consume() {
 if (buffer_empty) wait(empty);
 remove_item();
 signal(full);
 }
}
Monitors eliminate low-level semaphore handling and provide safer synchronization.

⚠ DEADLOCKS

A deadlock is a situation where a set of processes are blocked because each process is holding
a resource and waiting for another resource held by another process.

1. DEADLOCK – SYSTEM MODEL

Concept of System Model

In an operating system, multiple processes execute concurrently and compete for a limited
number of system resources. The system model explains how processes request, use, and
release resources. Deadlock arises when processes are unable to proceed because of improper
resource allocation.

A system consists of:

• Processes – active entities that need resources to execute.

• Resources – passive entities that are allocated to processes.

Types of Resources

1. Reusable Resources

Reusable resources are those that can be used by multiple processes one after another and are
not destroyed after use.
Examples: CPU, memory, printer, disk, files.

2. Consumable Resources

Consumable resources are created and destroyed during execution.
Examples: Messages, signals, interrupts.

Deadlock usually occurs with reusable resources.

Resource Usage Cycle

Every process follows the same sequence:

1. Request a resource

2. Use the resource

3. Release the resource

Deadlock occurs when processes request resources but cannot release the resources
they already hold.

Resource Allocation Graph (RAG)

A Resource Allocation Graph visually represents the allocation and request of resources.

• Process → represented by a circle

• Resource → represented by a rectangle

• Request edge → Process → Resource

• Assignment edge → Resource → Process

If the graph contains a cycle, deadlock may or may not exist (definite in single-instance
resources).

2. CHARACTERIZATION OF DEADLOCK

Deadlock can be characterized by four necessary conditions. All four must hold simultaneously
for deadlock to occur.

1. Mutual Exclusion

At least one resource must be non-shareable, meaning only one process can use it at a time.

Example:
Only one process can use a printer at a time.

2. Hold and Wait

A process holds one or more resources while waiting to acquire additional resources held by
other processes.

Example:
Process P1 holds memory and waits for a printer.

3. No Preemption

Resources cannot be forcibly taken from a process; they must be released voluntarily.

Example:
A file lock cannot be taken away until the process finishes using it.

4. Circular Wait

A circular chain of processes exists where each process is waiting for a resource held by the
next process.

Example:
P1 waits for P2
P2 waits for P3
P3 waits for P1

3. DEADLOCK PREVENTION

Deadlock prevention ensures that the system never enters a deadlock state by ensuring
that at least one of the necessary conditions is violated.

Techniques of Deadlock Prevention

1. Elimination of Mutual Exclusion

• Make resources sharable wherever possible.

• Limitation: Not all resources can be shared (printer, disk).

2. Elimination of Hold and Wait

• Processes must request all required resources at once before execution.

• If resources are not available, the process waits without holding any resource.

Advantage: No circular waiting
Disadvantage: Poor resource utilization and starvation

3. Elimination of No Preemption

• If a process holding resources requests another resource that is unavailable, all its held
resources are released.

• The process restarts later.

Limitation: Not suitable for non-preemptable resources.

4. Elimination of Circular Wait

• Assign a unique ordering to resources.

• Processes must request resources only in increasing order.

Example:
If R1 < R2 < R3, then a process cannot request R1 after holding R2.

Evaluation of Prevention

• Deadlock never occurs

• System efficiency decreases

• Not preferred for large systems

4. DEADLOCK AVOIDANCE

Deadlock avoidance dynamically examines resource allocation requests and grants them only if
the system remains in a safe state.

Safe and Unsafe States

• Safe State: There exists at least one safe sequence of processes.

• Unsafe State: No safe sequence exists; deadlock may occur.

Safe ≠ Deadlock
Unsafe ≠ Deadlock (but risky)

Banker’s Algorithm (Deadlock Avoidance)

To determine whether granting a resource request keeps the system in a safe state.

Data Structures

• Available – Available instances of each resource

• Max – Maximum demand of each process

• Allocation – Currently allocated resources

• Need = Max – Allocation

Steps of Banker’s Algorithm

1. Check if Request ≤ Need

2. Check if Request ≤ Available

3. Temporarily allocate resources

4. Check for safe sequence

5. If safe → grant request; else → deny

Example

If after allocation all processes can finish in some order, the system is safe.

Advantages

• Deadlock never occurs

• Better resource utilization than prevention

Disadvantages

• Requires advance knowledge of resource needs

• High computational overhead

5. DEADLOCK DETECTION

Deadlock detection allows deadlock to occur and then detects it using suitable algorithms.

Detection Techniques

1. Single Instance of Each Resource

• Use Wait-For Graph

• Cycle in the graph indicates deadlock

2. Multiple Instances of Resources

• Uses matrices similar to Banker’s Algorithm

• If some processes cannot complete → deadlock exists

Advantages

• High resource utilization

• Flexible allocation

Disadvantages

• Deadlock recovery cost is high

• Deadlock may exist for long duration

6. RECOVERY FROM DEADLOCK

Once deadlock is detected, the system must recover.

Recovery Methods

1. Process Termination

a) Abort all deadlocked processes

• Fast recovery

• High loss of work

b) Abort one process at a time
Victim selection based on:

• Priority

• Execution progress

• Resources held

• Cost of rollback

2. Resource Preemption

• Temporarily take resources from one process

• Assign them to others

Issues involved:

• Selecting victim

• Rollback

• Starvation prevention

7. COMBINED APPROACH TO DEADLOCK HANDLING

Modern operating systems use a combination of prevention, avoidance, detection, and
recovery instead of a single technique.

Working of Combined Approach

• Critical system resources → Prevention

• Predictable resource usage → Avoidance

• Non-critical resources → Detection & Recovery

• User-level handling → Ignored or managed by applications

Example

• File systems → Prevention

• Databases → Avoidance

• Batch systems → Detection

Advantages

• Balanced system performance

• Practical and flexible

• Efficient resource utilization

Disadvantages

• Complex design

• Requires careful policy decisions

STORAGE MANAGEMENT

Memory management is the functionality of an operating system which handles or manages
primary memory and moves processes back and forth between main memory and disk during
execution.

1. Logical and Physical Address Space

Understanding the difference between the address viewed by the CPU and the actual address
in memory is the foundation of memory management.

• Logical Address (Virtual Address): An address generated by the CPU during
program execution. It is the address seen by the user program.

• Physical Address: The actual address of a location in the main memory (RAM).

• Memory Management Unit (MMU): A hardware device that maps logical addresses
to physical addresses at run time.

Key Differences

Example:

Imagine a book. The "Page 5" written in the Table of Contents is the Logical Address. The
physical location where that page sits on the library shelf (e.g., Shelf 3, Slot 12) is the Physical
Address.

2. Swapping

Swapping is a mechanism in which a process can be temporarily moved out of main memory
(RAM) to a secondary storage (disk) and make that memory available to other processes.

How it Works

1. Swap Out: A process is moved from RAM to the Hard Disk (Backing Store).

2. Swap In: Later, the process is brought back from the Disk to RAM to continue
execution.

Use Case

• It allows the OS to run more processes than can fit into the physical memory at one
time.

• Context Switch Time: Swapping increases context switch time significantly because
moving data between disk and RAM is slow.

Feature Logical Address Physical Address

Visibility User can see this. User cannot see this directly.

Generation Generated by the CPU. Computed by MMU.

Space Called Logical Address Space. Called Physical Address Space.

3. Contiguous Allocation

In this method, each process is contained in a single contiguous section of memory.

Types of Partitioning

1. Fixed Partitioning: Memory is divided into fixed-sized partitions. One process per
partition.

◦ Drawback: Internal Fragmentation (wasted space inside a partition if the
process is smaller than the partition).

2. Variable Partitioning: Partitions are created dynamically according to the size of the
process.

◦ Drawback: External Fragmentation (total free space is enough for a process,
but it is not contiguous).

Allocation Strategies

• First Fit: Allocate the first hole that is big enough. (Fastest)

• Best Fit: Allocate the smallest hole that is big enough. (Reduces wasted space but is
slower)

• Worst Fit: Allocate the largest hole available. (Leaves large holes, but often inefficient)

4. Paging

Paging is a memory management scheme that eliminates the need for contiguous allocation of
physical memory.

Concept

• Frames: Physical memory is broken into fixed-sized blocks called Frames.

• Pages: Logical memory (process) is broken into blocks of the same size called Pages.

How it Works

When a process is to be executed, its pages are loaded into any available memory frames.
The OS maintains a Page Table to keep track of which page is stored in which frame.

• Logical Address = Page Number (p) + Page Offset (d)

• Page Table: Maps Page Number (p) to Frame Number (f).

Advantage: No external fragmentation.

Disadvantage: Internal fragmentation (in the last page of a process).

5. Segmentation with Paging

Segmentation breaks memory into logical pieces (segments) like "Code," "Stack," and "Data"
rather than arbitrary fixed sizes. However, pure segmentation suffers from external
fragmentation.

Solution: Segmentation with Paging

• The logical address space is divided into Segments.

• Each segment is then divided into Pages.

• This combines the user-friendly view of Segmentation with the efficient memory usage
of Paging.

6. Virtual Memory

Virtual Memory is a technique that allows the execution of processes that are not completely in
memory. It creates an illusion for users that they have a very large main memory.

Key Benefits

• Large Programs: You can run a 4GB game on a computer with only 2GB of RAM.

• High Degree of Multiprogramming: More programs can be in the mix since only
parts of them need to be loaded.

7. Demand Paging and Performance

Demand paging is the most common implementation of virtual memory.

A page is not loaded into main memory until it is explicitly required (demanded) by the CPU.
This is often called "Lazy Swapper."

Page Fault

A Page Fault occurs when a program tries to access a page that is not currently in main
memory.

1. Trap: The OS interrupts the process.

2. Check: Check if the reference is valid.

3. Fetch: Find a free frame and load the page from disk.

4. Update: Update the page table.

5. Restart: Restart the instruction that caused the fault.

Performance

Performance is heavily reliant on the Effective Access Time (EAT).

$$EAT = (1 - p) \times \text{Memory Access Time} + p \times \text{Page Fault Service Time}
$$

• Where p is the probability of a page fault.

• Goal: Keep p extremely low (close to 0).

8. Page Replacement Algorithms

When a page fault occurs and there are no free frames in memory, the OS must swap out an
existing page to make room. The algorithm decides which page to remove.

1. FIFO (First-In, First-Out)

• Logic: Replace the oldest page in memory.

• Pros: Simple to implement.

• Cons: Suffers from Belady’s Anomaly (adding more frames can sometimes cause
more page faults).

2. Optimal Page Replacement (OPT)

• Logic: Replace the page that will not be used for the longest period of time.

• Pros: Lowest possible page fault rate.

• Cons: Impossible to implement practically because we cannot predict the future. Used
as a benchmark.

3. LRU (Least Recently Used)

• Logic: Replace the page that has not been used for the longest time.

• Pros: Good performance, avoids Belady's anomaly.

• Cons: Requires hardware support (counters or stacks) to track usage history.

9. Allocation of Frames

How many frames do we give to each process?

1. Minimum Number of Frames: Defined by the computer architecture (e.g., an
instruction might need at least 2 frames to execute).

2. Equal Allocation: Split m frames among n processes equally (m/n).

3. Proportional Allocation: Allocate frames based on the size of the process (larger
process = more frames).

10. Thrashing

Thrashing is a severe performance degradation state.

A process is thrashing if it is spending more time paging (swapping pages in and out) than
executing.

Cause

• If a process does not have enough frames to hold its frequently used pages (working
set), it will fault, replace a page, and immediately fault again because it needed the
page it just replaced.

• This causes CPU utilization to drop drastically. The OS sees low CPU usage and tries to
add more processes, making the problem worse.

Solution

• Working Set Model: Ensure every process is allocated enough frames to hold its
current "locality" of reference.

11. Page Size and Other Considerations

Page Size

• Small Pages:

◦ Pros: Less internal fragmentation.

◦ Cons: Larger page tables (more overhead).

• Large Pages:

◦ Pros: Smaller page tables, faster I/O (disk transfers are efficient).

◦ Cons: More internal fragmentation.

• Trend: Modern systems are moving toward larger page sizes (e.g., 4KB to 2MB or even
1GB huge pages) to accommodate larger RAM sizes.

TLB (Translation Lookaside Buffer)

• A special, small, fast-lookup hardware cache.

• It stores recent logical-to-physical address translations.

• If a page number is in the TLB (TLB Hit), translation is instant. If not (TLB Miss), the
system must consult the slower page table in RAM.

Inverted Page Table

• Instead of one table per process, there is one global table with one entry per physical
frame.

• Reduces memory needed for page tables but makes searching for a specific logical page
harder (hashing is usually used).

UNIT - 3

Introduction to concept of Open Source Software: Introduction to Linux, Evolution of
Linux, Linux vs. UNIX, Different Distributions of Linux, Installing Linux, Linux Architecture,
Linux file system (inode, Super block, Mounting and Unmounting), Essential Linux Commands
(Internal and External Commands), Kernel, Process Management in Linux, Signal Handling,
System call, System call for Files, Processes and Signals.

Introduction to Open Source Software & Linux

1. Concept of Open Source Software (OSS)

Open Source Software (OSS) refers to software whose source code is made available to the
public. The copyright holder grants users the right to study, change, and distribute the
software to anyone and for any purpose.

Core Philosophy: The "Free" in Freedom

In the world of OSS, "Free" doesn't just mean zero cost (gratis); it refers to liberty (libre).

• Freedom 0: The freedom to run the program as you wish, for any purpose.

• Freedom 1: The freedom to study how the program works and change it.

• Freedom 2: The freedom to redistribute copies so you can help others.

• Freedom 3: The freedom to distribute copies of your modified versions to others.

Key Differences: Proprietary vs. Open Source

2. Introduction to Linux

What is Linux?

Strictly speaking, Linux is just a Kernel—the core component of the operating system that
manages hardware. However, in common usage, "Linux" refers to the complete operating
system, which includes:

1. The Linux Kernel: (Manages hardware).

2. GNU Utilities: (Compilers, shell, file tools).

Feature Open Source Software
(OSS) Proprietary (Closed Source)

Source
Code Publicly available. Kept secret (Trade Secret).

Modificat
ion Allowed and encouraged. Strictly prohibited; reverse

engineering is illegal.

Cost Usually free (e.g., Linux, VLC). Paid license (e.g., Windows,
Photoshop).

Support Community-driven (Forums,
Wikis). Dedicated customer support team.

Examples Linux, Android, Python, Mozilla
Firefox.

MS Windows, macOS, Adobe Suite,
Oracle DB.

3. Desktop Environment: (GUI like GNOME or KDE).

4. Application Software.

Evolution of Linux (History)

• 1969 (The Precursor): UNIX was developed at AT&T Bell Labs by Ken Thompson and
Dennis Ritchie. It was powerful but expensive and proprietary.

• 1983 (The Vision): Richard Stallman launched the GNU Project. His goal was to
create a completely free UNIX-like operating system. He built the tools (compiler, text
editor, shell) but lacked the "Kernel" (the heart).

• 1991 (The Birth): Linus Torvalds, a student at the University of Helsinki, created a
free kernel as a hobby project because he couldn't afford UNIX. He named it Linux.

• The Marriage: The GNU tools were combined with the Linux Kernel to create the full
OS, technically called GNU/Linux.

3. Linux vs. UNIX

While Linux looks and acts like UNIX, they are different.

4. Different Distributions of Linux (Distros)

Since the Linux Kernel is open source, anyone can take it, package it with different software,
and release it. These "flavors" are called Distributions.

Parameter Linux UNIX

Origin
Open Source clone written
from scratch by Linus
Torvalds.

Developed by AT&T Bell Labs
(System V) and Berkeley (BSD).

Licensing GPL (General Public License)
- Free. Proprietary licenses - Expensive.

Portability
Runs on almost any
hardware (Watches, Routers,
PC, Supercomputers).

Often hardware-specific (e.g.,
AIX runs on IBM Power servers).

File System Supports many (ext4, xfs,
btrfs, ntfs).

Supports native UNIX filesystems
(zfs, ufs, jfs).

Target
Audience

Everyone (Developers, Home
Users, Cloud).

High-end servers, Mainframes,
Banks.

Major Families

1. Debian Family:

◦ Debian: The rock-solid, stable grandfather.

◦ Ubuntu: Based on Debian. Most popular for beginners and developers.
Uses .deb packages and apt manager.

◦ Kali Linux: Designed for cybersecurity and penetration testing.

2. Red Hat Family:

◦ RHEL (Red Hat Enterprise Linux): Commercial, paid support, standard for
corporate servers.

◦ Fedora: The testing ground for RHEL. Bleeding-edge features.

◦ CentOS/Rocky Linux: Free versions of RHEL. Uses .rpm packages and yum/
dnf manager.

3. Android:

◦ Yes, Android runs on a modified Linux Kernel!

5. Installing Linux (General Concept)

Installing Linux usually involves these high-level steps:

1. Download ISO: Get the image file of the distro (e.g., Ubuntu).

2. Create Bootable Media: Burn it to a USB stick.

3. Partitioning: Dividing the hard disk. Linux typically needs:

◦ Root Partition (/): Where the OS lives.

◦ Swap Partition: Virtual memory (used when RAM is full).

4. Bootloader Setup (GRUB): Installing the program that loads the OS when you turn
on the PC.

5. User Setup: Creating a root password and a standard user account.

6. Linux Architecture

The system is built in layers, separating the user from the complex hardware.

1. Hardware Layer: Physical devices (RAM, HDD, CPU).

2. Kernel Layer: The core program that interacts directly with hardware. It hides
hardware complexity from applications.

3. Shell Layer: An interface (command line) that takes user inputs and sends them to the
kernel.

4. Application/Utility Layer: User programs (Web Browser, Text Editor, Compilers).

7. Linux File System

Linux does not use drive letters (like C: or D:). It uses a Single Root Hierarchical Tree.

The Root (/) and Essential Directories

• /bin & /sbin: Binaries. Essential command programs (ls, cp, ip).

• /etc: Etcetera. System configuration files.

• /home: Home. Contains personal folders for users (e.g., /home/john).

• /root: The home directory for the Superuser (Administrator).

• /tmp: Temporary files (deleted on reboot).

• /dev: Devices. Hardware files (e.g., /dev/sda is the hard disk).

• /proc: Process. A virtual filesystem containing info about running processes.

Technical Concepts

A. Inode (Index Node)

The Inode is a data structure on the disk that describes a file.

• What it stores: File type, Permissions, Owner ID, Group ID, File Size, Access times,
and pointers to the data blocks on the disk.

• What it DOES NOT store: The Filename. (The filename is stored in the directory,
pointing to the inode number).

• Command: ls -i shows inode numbers.

B. Super Block

This is the metadata of the entire file system.

• It stores: Total size of the file system, Block size, Total number of inodes, Free block
count.

• Critical: If the Super Block is corrupted, the OS cannot read the file system at all.

C. Mounting and Unmounting

• Mounting: Before you can use a storage device (like a USB or Hard Drive partition), it
must be attached to a directory in the file tree.

◦ Command: mount /dev/sdb1 /media/usb

• Unmounting: Safely detaching it to ensure data is written.

◦ Command: umount /media/usb

8. Essential Linux Commands

Commands are split into two types based on where they live.

A. Internal Commands

• Definition: Built directly into the Shell program. They load instantly because they are
part of the shell's memory.

• Examples:

◦ cd (Change Directory)

◦ echo (Display text)

◦ pwd (Print Working Directory)

◦ exit (Close shell)

B. External Commands

• Definition: These are separate binary files stored on the hard disk (usually in /bin).
The shell has to find them and load them.

• Examples:

◦ ls (List files)

◦ cp (Copy files)

◦ cat (Read file content)

◦ mv (Move/Rename)

9. The Kernel: The Core of Linux

The Kernel is the central module of an operating system. It is the first program loaded into
memory when the computer starts (after the bootloader) and remains in memory until the OS
is shut down. It acts as a bridge between the User Applications (software) and the Data
Processing (hardware).

Kernel Architecture Types

There are two main theories on how to build a kernel. Linux uses the first one.

1. Monolithic Kernel (Used by Linux):

◦ Theory: All OS services (File system, Memory management, Device drivers,
Process scheduling) run in the same memory space as the Kernel itself (called
"Kernel Space").

◦ Advantage: Speed. Since all services are in the same place, they can talk to
each other directly without complex message passing.

◦ Disadvantage: Crash Risk. If a bad device driver crashes, it can crash the
entire operating system.

2. Microkernel (Used by Minix/QNX):

◦ Theory: The kernel is kept tiny. Most services (like file systems and drivers) run
in "User Space" just like normal programs.

◦ Advantage: Stability. If a driver crashes, the system stays alive.

◦ Disadvantage: Slower performance due to high communication overhead
between modules.

Core Responsibilities of the Linux Kernel

1. Process Management: It decides which process uses the CPU and for how long
(Scheduling).

2. Memory Management: It keeps track of how much RAM is used and handles
"Swapping" (moving inactive data to the hard disk).

3. Device Management: It controls peripherals (Mouse, Disk, Keyboard) via Device
Drivers.

4. System Calls: It provides an API (Application Programming Interface) for programs to
ask for services.

10. Process Management in Linux

A Process is more than just a program code. It is an "active" entity.

• Program: Passive entity (stored on disk).

• Process: Active entity (loaded in RAM with a program counter, stack, and data
section).

The Process Control Block (PCB)

The OS must track every process. It uses a data structure called the Process Control Block
(PCB) or task_struct in Linux.

What is inside a PCB?

• PID (Process ID): Unique number for identification.

• Process State: Is it running, waiting, or sleeping?

• Program Counter: Pointer to the next instruction to execute.

• CPU Registers: Saved data when the process is paused.

• Memory Limits: Which part of RAM belongs to this process.

• Open Files List: Which files this process is reading/writing.

Parent and Child Processes

• Parent: The process that creates another process.

• Child: The new process created.

• The init Process (or systemd): The very first process started by the Kernel. It has
PID 1. All other processes in Linux are descendants of init.

Process States (The 5-State Model)

1. New: The process is being created.

2. Ready: The process is loaded in RAM, waiting in a queue for the CPU scheduler to pick
it.

3. Running: The process has control of the CPU and is executing instructions.

4. Blocked / Waiting: The process cannot run because it is waiting for an event (e.g.,
waiting for the user to press a key or a file to finish downloading).

5. Terminated: The process has finished its job and memory is removed.

11. Signal Handling

A Signal is a limited form of inter-process communication (IPC) used in Unix-like systems. It is
an asynchronous notification sent to a process to notify it of an event. Think of it as a
"software interrupt."

Sources of Signals

1. Hardware: (e.g., Division by zero error, Illegal memory access).

2. The Kernel: (e.g., Notifying a process that I/O is available).

3. Users: (e.g., Pressing Ctrl+C or Ctrl+Z).

4. Other Processes: (e.g., Using the kill command).

How a Process Handles a Signal

When a signal is delivered, the process has three choices:

1. Ignore it: The process pretends nothing happened. (Note: SIGKILL and SIGSTOP
cannot be ignored).

2. Catch it (Trap): The process executes a specific function (Signal Handler) to handle
the event gracefully (e.g., saving a file before closing).

3. Default Action: Let the Kernel do the default action (usually terminating the process).

Important Signal Types

• SIGINT (2): Interrupt from keyboard (Ctrl+C). Action: Terminate.

• SIGQUIT (3): Quit from keyboard (Ctrl+\). Action: Terminate and dump core (save
memory state for debugging).

• SIGKILL (9): Force Kill. Action: Immediate termination. Cannot be blocked or handled.

• SIGALRM (14): Timer signal. Sent when a timer set by alarm() expires.

12. System Calls

Concept: User Mode vs. Kernel Mode

For security, Linux separates memory into two zones:

• User Space: Where your normal programs (Web browser, Text editor) run. They have
no access to hardware.

• Kernel Space: Where the core OS runs. It has full access to hardware.

If a user program wants to write to the hard disk, it cannot do it directly. It must ask the
Kernel to do it. This request is called a System Call.

A. System Calls for File Management

These calls allow programs to manipulate files.

1. creat(name, mode)

◦ Theory: Creates a new empty file.

◦ Arguments: name is the filename; mode defines permissions (rwx).

◦ Returns: A File Descriptor (integer) on success, or -1 on error.

2. open(name, mode)

◦ Theory: Opens an existing file for reading, writing, or both.

◦ Modes: O_RDONLY (Read only), O_WRONLY (Write only), O_RDWR (Read/
Write).

3. read(fd, buffer, count)

◦ Theory: Reads data from the file identified by fd (File Descriptor).

◦ Process: It copies count bytes from the file into the memory buffer.

◦ Returns: Number of bytes actually read (0 indicates End of File).

4. write(fd, buffer, count)

◦ Theory: Writes data from the memory buffer to the file fd.

5. lseek(fd, offset, whence)

◦ Theory: Moves the file pointer (cursor) inside a file without reading/writing.

◦ Example: "Skip the first 100 bytes and start reading."

B. System Calls for Process Management

These are the most critical calls for an OS exam.

1. fork()

◦ Theory: This is the only way to create a new process in Unix/Linux.

◦ Behavior: It creates an exact duplicate of the current process.

▪ The original process is the Parent.

▪ The new copy is the Child.

◦ Return Values (Crucial for Exams):

▪ It returns 0 to the Child process.

▪ It returns the Child’s PID (a positive integer) to the Parent process.

▪ It returns -1 if the creation failed.

2. exec() Family (execl, execv, etc.)

◦ Theory: fork() only creates a copy. exec() is used to replace that copy with a
new program.

◦ Example: When you type ls in the terminal:

▪ Terminal calls fork() to create a copy of itself.

▪ The Child process calls exec("ls").

▪ The Child's memory is wiped and replaced with the code for ls.

3. wait()

◦ Theory: Used by the Parent process to pause execution until one of its Child
processes finishes.

◦ Why use it? To prevent "Zombie Processes." The parent waits to collect the exit
status of the child.

4. exit(status)

◦ Theory: Terminates the process normally.

◦ Status: An integer sent back to the parent (usually 0 means success, non-zero
means error).

5. getpid() and getppid()

◦ getpid(): Returns the process's own ID.

◦ getppid(): Returns the Parent's process ID.

C. System Calls for Signals

1. kill(pid, sig)

◦ Sends a signal sig to the process with ID pid.

◦ Misconception: Despite the name "kill," it can send any signal (like Pause or
Stop), not just death.

2. alarm(seconds)

◦ Sets a timer. When the timer counts down to zero, the kernel sends the
SIGALRM signal to the process.

3. pause()

◦ Suspends the process (puts it to sleep) until a signal is received. It does not use
CPU while waiting.

UNIT - 4

Shell Programming: Shell Programming - Introduction to Shell, Various Shell of Linux, Shell
Commands, I/O Redirection and Piping, Vi and Emacs editor, Shell control statements,
Variables, if-then-else, case-switch, While, Until, Find, Shell Meta characters, Shell Scripts,
Shell keywords, Tips and Traps, Built in Commands, Handling documents, C language
programming, Prototyping, Coding, Compiling, Testing and Debugging, Filters.

1. Introduction to Shell

The Shell is a command-line interpreter that acts as the interface between the User and the
Kernel. It is a program that takes commands from the keyboard, interprets them, and passes
them to the operating system to perform.

The Shell Life Cycle (How it works)

When you type a command (e.g., ls -l), the shell goes through these steps:

1. Read: It reads the command from Standard Input (Keyboard).

2. Parse: It breaks the command into the program name (ls) and arguments (-l).

3. Search: It looks for the program in the directories listed in the $PATH variable.

4. Execute: It asks the Kernel to run the program.

5. Output: It displays the result on the screen.

6. Loop: It returns the prompt (e.g., $) and waits for the next command.

2. Various Shells of Linux

Linux supports multiple shells. Users can switch between them, but bash is the standard.

1. sh (Bourne Shell): The original Unix shell. It is small and fast but lacks modern
features like history or tab completion. Usually found as /bin/sh.

2. bash (Bourne Again Shell): The default shell for most Linux distributions. It is
backward compatible with sh but adds features like command history, command line
editing, and aliases.

3. csh (C Shell): Uses syntax similar to the C programming language. Popular among C
programmers but less robust for scripting.

4. ksh (Korn Shell): Combines the best features of sh and csh. It was the standard for
commercial Unix (like AIX and Solaris).

5. zsh (Z Shell): A modern, feature-rich shell with advanced auto-completion and
themes.

3. I/O Redirection and Piping

Linux treats all input and output as streams of data. By default, these streams are connected
to your terminal, but you can redirect them.

Standard Streams (File Descriptors)

Every process gets three open channels:

• 0: Standard Input (stdin): Default source of input (Keyboard).

• 1: Standard Output (stdout): Default destination for output (Screen).

• 2: Standard Error (stderr): Default destination for error messages (Screen).

Redirection Operators

• > (Output Redirection): Sends output to a file. Overwrites existing data.

◦ Ex: ls > list.txt (Saves directory list to a file).

• >> (Append Redirection): Adds output to the end of a file.

◦ Ex: date >> log.txt (Adds timestamp without deleting old logs).

• < (Input Redirection): Feeds a file into a command.

◦ Ex: wc -l < list.txt (Counts lines in the file).

• 2> (Error Redirection): Redirects only error messages.

◦ Ex: gcc program.c 2> errors.log (Saves compilation errors to a file).

Piping (|)

The Pipe connects the Standard Output of the first command to the Standard Input of the
second command. It allows chaining tools together.

• Syntax: Command_A | Command_B

• Example: cat file.txt | grep "error" | sort

◦ (Read file → Search for "error" → Sort the results).

4. Vi and Emacs Editors

To write scripts or C programs, you need a text editor.

Vi / Vim (Visual Editor)

• Type: Modal Editor (Different modes for typing and commanding).

• Ubiquity: It is installed on essentially every Linux system in the world.

• Three Modes:

1. Command Mode: The default. Keys perform actions (e.g., dd deletes a line, yy
copies/yanks a line, p pastes).

2. Insert Mode: Press i to enter. Used for typing text. Press Esc to leave.

3. Last Line (Ex) Mode: Press : to enter. Used to save (w), quit (q), or force quit
(q!).

Emacs

• Type: Modeless Editor.

• Philosophy: "An operating system inside an editor." Highly extensible.

• Usage: Uses Ctrl and Alt (Meta) key combinations (e.g., Ctrl+x Ctrl+s to save).

5. Shell Variables and Meta Characters

Variables

• User-Defined: name="John" (No spaces around =). Access with $name.

• Environment (Global): Variables that affect the whole system.

◦ $HOME (User's home directory).

◦ $PATH (Where shell looks for commands).

◦ $USER (Current username).

• Positional Parameters (Arguments):

◦ $0: Name of the script.

◦ $1: First argument passed to the script.

◦ $#: Total number of arguments.

◦ $?: Exit status of the last command (0 = Success).

Shell Meta Characters (Wildcards)

Special characters interpreted by the shell before execution.

• *: Matches any string. (rm *.txt removes all text files).

• ?: Matches any single character.

• []: Matches a range of characters. ([a-z] matches any lowercase letter).

• \: Escape character. Removes the special meaning of the next char.

• ' ' vs " ":

◦ Single Quotes: strict quoting. $VAR is treated as text.

◦ Double Quotes: weak quoting. $VAR is expanded to its value.

6. Shell Control Statements (Logic & Loops)

Shell control statements are used to control the flow of execution in a shell script. They
include decision-making (logic) and looping constructs.

A. Decision-Making (Logic Statements)

1. if Statement

Used to execute commands when a condition is true.

Syntax

if condition
then
 commands
fi
Example

if [$age -ge 18]
then
 echo "Eligible to vote"
fi

2. if-else Statement

if [$num -gt 0]
then
 echo "Positive number"
else

 echo "Negative or Zero"
fi

3. if-elif-else Statement

if [$marks -ge 90]
then
 echo "Grade A"
elif [$marks -ge 75]
then
 echo "Grade B"
else
 echo "Grade C"
fi

4. case Statement

Used for multiple conditions (alternative to if-elif).

Syntax

case variable in
 pattern1) commands ;;
 pattern2) commands ;;
 *) default commands ;;
esac
Example

case $day in
 Mon) echo "Start of week" ;;
 Fri) echo "Weekend soon" ;;
 *) echo "Regular day" ;;
esac

B. Looping Statements

1. for Loop

Used when the number of iterations is known.

Syntax

for var in list
do
 commands
done
Example

for i in 1 2 3 4 5
do
 echo "Number: $i"
done

2. while Loop

Executes as long as the condition is true.

Syntax

while condition
do
 commands
done
Example

count=1
while [$count -le 5]
do
 echo $count
 count=$((count+1))
done

3. until Loop

Executes until the condition becomes true.

Syntax

until condition
do
 commands
done
Example

num=1
until [$num -gt 5]
do
 echo $num
 num=$((num+1))
done

4. select Loop

Used to create menus.

Example

select option in Start Stop Restart Exit
do
 case $option in
 Start) echo "Starting..." ;;
 Stop) echo "Stopping..." ;;
 Restart) echo "Restarting..." ;;
 Exit) break ;;
 esac
done

C. Loop Control Statements

break

Exits the loop immediately.

for i in {1..10}
do
 if [$i -eq 5]
 then

 break
 fi
 echo $i
done

continue

Skips current iteration and moves to next.

for i in {1..5}
do
 if [$i -eq 3]
 then
 continue
 fi
 echo $i
done

7. Shell Scripts

A shell script is a text file containing a sequence of shell commands that are executed
automatically.

Features

• Automates repetitive tasks

• Can include variables, loops, conditions, and functions

• Executed by a shell (e.g., bash, sh)

Example

#!/bin/bash
echo "Hello, World!"
date
How to Run

chmod +x script.sh
./script.sh
or

bash script.sh

8. Shell Keywords

Shell keywords are reserved words that have special meaning to the shell.
They are part of the shell’s syntax and cannot be used as command names.

Common Shell Keywords

Keyword Purpose

if, then, else, fi Conditional execution

for, while, until, do, done Loops

case, esac Multi-way branching

Example

if [-f file.txt]; then
 echo "File exists"
fi

9. Shell Built-in Commands

Built-in commands are commands implemented inside the shell itself, not external
programs.

Why Built-ins Exist

• Faster execution

• Can modify the shell environment (external commands cannot)

Common Built-in Commands

Example

cd /home/user
echo "Welcome"
read name
echo "Hello $name"

10. Tips and Traps

Traps (Common Mistakes to Avoid):

1. The Space Trap:

function Define a function

select Menu selection

in Used in loops

time Measure command execution
time

Command Description

cd Change directory

echo Display output

read Read input

exit Exit shell

export Set environment variables

set, unset Manage variables

alias, unalias Command shortcuts

history Command history

jobs, fg, bg Job control

◦ Wrong: count = 5 (Shell thinks count is a command and = is an argument).

◦ Right: count=5 (No spaces in assignment).

◦ Right: if [$a -eq 5] (Spaces are required inside the brackets []).

2. The Execute Trap:

◦ Writing a script isn't enough. You cannot run it until you grant permission.

◦ Fix: chmod +x myscript.sh

3. The Shebang Trap:

◦ If you don't write #!/bin/bash at the very top (Line 1), the system might use the
wrong shell (like plain sh) and your advanced code won't work.

11. Handling Documents

A "Here Document" (Heredoc) is a way to redirect a block of code or text into a command/
script without using an external file. It tells the shell: "Read input from here, right now, until
you see a specific stopping word."

Syntaxz

command << DELIMITER
Text Line 1
Text Line 2
DELIMITER
Real-World Example:

Imagine you want to create a welcome note automatically inside a script.

Instead of creating a file separately, we do it in the script:

cat > welcome.txt << ENDOFTEXT
Hello User,
Welcome to the Linux System.
Please do not share your password.
ENDOFTEXT

• The shell reads everything after << ENDOFTEXT as input for cat.

• It stops when it sees the word ENDOFTEXT again.

12. C Language Programming in Linux

Linux is the native environment for C programming. The operating system itself is written in C.
Developing in Linux follows a strict Life Cycle:

Phase 1: Prototyping

Definition: Prototyping is the act of declaring a function's "signature" before defining its
actual body/code.

• Theory: In C, the compiler reads code from top to bottom. If you use a function (like
calculate_sum) inside main() before you have written the code for it, the compiler will
error out. A prototype tells the compiler: "Hey, trust me, this function exists, and here
are the inputs it takes."

Example:

#include <stdio.h>

// --- PROTOTYPE ---
// Tells compiler: "expect a function named add that takes 2 ints"
int add(int a, int b);

int main() {
 int result = add(5, 10); // Compiler is happy now
 printf("%d", result);
 return 0;
}

// --- DEFINITION ---
// The actual code
int add(int a, int b) {
 return a + b;
}

Phase 2: Coding

Writing the source code in a text editor.

• Tools: In Linux, we use editors like vi, vim, nano, or emacs.

• File Extension: C files must end with .c (e.g., program.c). Header files end with .h.

• Pro Tip: In Linux, header files (like stdio.h) are actually stored in the /usr/include
directory. You can actually go there and read them!

Phase 3: Compiling

Compiling is the process of converting human-readable Source Code (High-Level Language)
into Machine Code (Binary) that the CPU understands.

• The Tool: GCC (GNU Compiler Collection).

The 4 Hidden Stages of Compilation:

When you run the command gcc filename.c, the system actually runs four separate programs
in a row. This is a favorite exam question.

1. Preprocessing (The Preprocessor):

◦ Input: Source code (.c)

◦ Action: It handles lines starting with #.

▪ Removes comments (// or /* */).

▪ Expands Macros (#define PI 3.14 becomes 3.14).

▪ Includes Headers (#include <stdio.h> copies the actual file content into
your code).

◦ Output: Expanded source code (.i).

2. Compilation (The Compiler):

◦ Input: Expanded source (.i)

◦ Action: It checks for Syntax Errors (missing semicolons, wrong types). If the
code is correct, it translates C code into Assembly Language.

◦ Output: Assembly code (.s).

3. Assembly (The Assembler):

◦ Input: Assembly code (.s)

◦ Action: Translates Assembly mnemonics (like MOV, ADD, JMP) into pure Machine
Code (0s and 1s).

◦ Output: Object file (.o). The code is binary now, but it cannot run yet because it
doesn't know where printf is.

4. Linking (The Linker):

◦ Input: Object file (.o) + System Libraries.

◦ Action: It combines your code with the Operating System libraries (like glibc). It
resolves "unresolved symbols" (like finding the actual code for printf).

◦ Output: Executable file (a.out or custom name).

Commands:

• gcc program.c (Creates a.out).

• gcc -o myapp program.c (Creates an executable named myapp).

• gcc -Wall program.c (Shows All Warnings – Pro practice).

Phase 4: Testing

Running the program with various inputs to ensure it behaves as expected.

• Execution Command: ./myapp (The ./ tells Linux to look in the current directory).

• Types of Testing:

◦ Happy Path: Entering valid data (e.g., entering "5" for age).

◦ Edge Cases: Entering "0" or "-5" for age.

◦ Stress Testing: Entering huge numbers.

Phase 5: Debugging

The process of identifying and removing errors (bugs).

Types of Errors:

1. Compile-Time Errors: Syntax mistakes (missing ;). The compiler catches these.

2. Run-Time Errors: The program crashes while running (e.g., Segmentation Fault /
Core Dump). This usually happens when you try to access memory that doesn't belong
to you (bad pointers).

3. Logical Errors: The program runs but gives the wrong answer (e.g., 2 + 2 = 5).

The Tool: GDB (GNU Debugger)

GDB is a command-line tool that lets you pause your program while it is running and look
inside the memory.

How to Debug like a Pro:

1. Compile with Debug Info: You must add the -g flag.

◦ gcc -g program.c

2. Start GDB:

◦ gdb a.out

3. Set a Breakpoint: Tell GDB to stop at the main function.

◦ (gdb) break main

4. Run the program:

◦ (gdb) run

5. Step-by-Step:

◦ (gdb) next (Executes the next line).

◦ (gdb) step (If the line is a function, it goes inside the function).

6. Inspect Variables:

◦ (gdb) print x (Shows the current value of variable x).

7. Find the Crash:

◦ If the program crashes, type (gdb) bt (Backtrace). It will show you exactly which
line caused the crash.

13. Filters in Linux

A Filter is a command that accepts text data from Standard Input, transforms/processes it, and
sends the result to Standard Output. They are designed to be used with Pipes (|).

A. grep (Global Regular Expression Print)

The most important filter. It searches for specific words or patterns.

• Syntax: grep [options] "pattern" filename

• Pro Options:

◦ -i: Ignore case (treats "Apple" and "apple" as the same).

◦ -v: Invert match (show lines that do NOT contain the word).

◦ -n: Show line numbers.

◦ -c: Count the number of matches.

◦ -r: Recursive search (search in all files inside a folder).

• Example: grep -i "error" server.log

B. sort

Arranges lines of text in order.

• Syntax: sort [options] filename

• Pro Options:

◦ (Default): Sorts alphabetically (ASCII order).

◦ -n: Numeric sort (Correctly sorts 1, 2, 10 instead of 1, 10, 2).

◦ -r: Reverse order (Z to A).

◦ -k: Sort by a specific column.

• Example: ls -l | sort -nk 5 (Sort files by size, smallest to largest).

C. uniq (Unique)

Removes consecutive duplicate lines.

• Trap: uniq only detects duplicates if they are next to each other. You must always sort
first!

• Syntax: sort names.txt | uniq

• Option: uniq -c (Counts how many times each line appeared).

D. cut

Used to slice a file vertically (extract columns).

• Syntax: cut -d "delimiter" -f field_number filename

• Example: Imagine a CSV file data.txt: John,25,Engineer

◦ cut -d "," -f 1 data.txt -> Output: John

◦ cut -d "," -f 1,3 data.txt -> Output: John,Engineer

E. tr (Translate)

Used to replace or delete characters. It only works on Streams (stdin), not files directly.

• Syntax: command | tr "old" "new"

• Example: echo "hello" | tr "a-z" "A-Z" -> Output: HELLO

• Delete: echo "Hello 123" | tr -d "0-9" -> Output: Hello (Deletes numbers).

F. wc (Word Count)

Counts the contents of a file.

• -l: Count lines.

• -w: Count words.

• -c: Count characters/bytes.

UNIT - 5

Linux System Administrations: File listings, Ownership and Access Permissions, File and
Directory types, Managing Files, User and its Home Directory, Booting and Shutting down
(Boot Loaders, LILO, GRUB, Bootstrapping, init Process, System services).

1. File Listings

In Linux, everything is treated as a file. The ls (list) command is used to view files and
directories.

Common ls Options

• ls: Simple list of filenames.

• ls -a: Shows all files, including hidden files (those starting with a dot ., like .bashrc).

• ls -l: Displays a long listing format, providing detailed attributes.

• ls -R: Recursive listing (shows subdirectories and their contents).

Understanding ls -l Output

When you run ls -l, the output looks like this:

drwxr-xr-x 2 student class 4096 Nov 5 10:00 Documents

Breakdown of columns:

1. File Type & Permissions (drwxr-xr-x): The first character indicates the type (d for
directory, - for file). The next 9 characters are permissions.

2. Link Count (2): Number of hard links to this file.

3. Owner (student): The username of the file owner.

4. Group (class): The group name associated with the file.

5. Size (4096): File size in bytes.

6. Modification Date/Time (Nov 5 10:00): Last time the file was modified.

7. Filename (Documents): The name of the file or directory.

2. Ownership and Access Permissions

Linux is a multi-user system, so access control is critical. Every file has three categories of
users:

1. User (u): The owner of the file.

2. Group (g): Other users in the file's group.

3. Others (o): Everyone else on the system.

Permission Types

Permission Permission Permission Permission

Read r Can view
content (cat) Can list contents (ls)

Changing Permissions (chmod)

You can change permissions using Symbolic Mode or Absolute (Octal) Mode.

A. Symbolic Mode

Syntax: chmod [who][operator][permission] filename

• Who: u (user), g (group), o (others), a (all).

• Operator: + (add), - (remove), = (set).

• Example:

◦ chmod u+x script.sh (Add execute permission for the owner).

◦ chmod go-w file.txt (Remove write permission for group and others).

B. Numerical (Octal) Mode [Important for Exams]

Permissions are represented by octal numbers.

• Read (r) = 4

• Write (w) = 2

• Execute (x) = 1

• No Permission (-) = 0

Calculation Formula:

Sum the values for each user category.

Example 1: Full permissions for owner, read-execute for group/others.

• Owner: r + w + x = 4 + 2 + 1 = 7

• Group: r + - + x = 4 + 0 + 1 = 5

• Others: r + - + x = 4 + 0 + 1 = 5

• Command: chmod 755 filename

Example 2: Read-write for owner, Read-only for group, No access for others.

• Owner: r + w + - = 4 + 2 + 0 = 6

• Group: r + - + - = 4 + 0 + 0 = 4

• Others: - + - + - = 0 + 0 + 0 = 0

• Command: chmod 640 filename

Changing Ownership

• chown (Change Owner): Changes the file owner.

◦ Example: chown user1 file.txt

• chgrp (Change Group): Changes the file group.

Write w Can modify/
delete content

Can create/delete files inside
it

Execute x Can run file as a
program Can enter directory (cd)

◦ Example: chgrp staff file.txt

3. File and Directory Types

Linux identifies file types by the first character in the permission string (from ls -l).

1. Regular File (-): Standard files (text, images, binaries).

2. Directory (d): Contains references to other files.

3. Link (l): A pointer to another file (like a shortcut).

4. Character Special File (c): Hardware devices that handle data byte-by-byte (e.g.,
terminals, keyboards).

5. Block Special File (b): Hardware devices that handle data in blocks (e.g., Hard drives,
USBs).

6. Socket (s): Used for inter-process communication (network sockets).

7. Named Pipe (p): Also called FIFO, used to pass data between running processes.

4. Managing Files and User Directories

File Management Commands

• Create File: touch filename (creates empty file) or cat > filename.

• Create Directory: mkdir dirname.

• Copy: cp source destination (Use cp -r for directories).

• Move/Rename: mv oldname newname or mv file path/.

• Remove:

◦ rm filename (delete file).

◦ rmdir dirname (delete empty directory).

◦ rm -rf dirname (force delete directory and contents—use with caution!).

User and Home Directory

• Root Directory (/): The top of the file system hierarchy.

• Home Directory (/home/username): Where a standard user stores personal data.

◦ The symbol ~ (tilde) represents the current user's home directory.

• Root User's Home: Located at /root (distinct from /).

5. Booting and Shutting Down

The Linux boot process (Bootstrapping) involves a sequence of 6 strictly defined stages.

Stage 1: BIOS (Basic Input/Output System)

• Performs POST (Power-On Self-Test) to check hardware (RAM, CPU, Keyboard).

• Searches for the bootable device (Hard Disk, CD, USB).

• Loads the MBR (Master Boot Record).

Stage 2: MBR / Boot Loader

The MBR is the first 512 bytes of the hard drive. It contains the boot loader.

• Boot Loader's Job: Load the OS kernel into memory.

• Types of Boot Loaders:

1. LILO (Linux Loader):

▪ Legacy/Old.

▪ It depended on the physical location of the kernel on the disk.

▪ If you updated the kernel, you had to manually run the lilo command to
update the map.

▪ No interactive command line.

2. GRUB (GRand Unified Bootloader):

▪ Modern/Standard.

▪ Understands file systems, so it can find the kernel by filename.

▪ Highly configurable (menu to select OS, recovery mode).

▪ Stage 1: Loads tiny code from MBR.

▪ Stage 2: Loads the GRUB configuration menu (/boot/grub/grub.cfg).

Stage 3: Kernel

• The Boot loader loads the Kernel (core of the OS).

• The Kernel initializes hardware drivers and mounts the Root File System as "read-
only" initially.

Stage 4: Init Process

• The Kernel starts the first program: /sbin/init.

• This process always has PID = 1 (Process ID).

• It is the parent of all other processes.

Stage 5: Runlevels / System Services

The init process looks at the configuration to decide what state (Runlevel) the system should
be in.

• SysVinit (Older): Uses /etc/inittab.

◦ Runlevel 0: Halt/Shutdown.

◦ Runlevel 1: Single-user mode (Maintenance).

◦ Runlevel 3: Multi-user mode (Text only/Server).

◦ Runlevel 5: Graphical mode (GUI).

◦ Runlevel 6: Reboot.

• Systemd (Newer): Uses "Targets" instead of runlevels (e.g., graphical.target).

Stage 6: User Login

• getty or GUI Display Manager starts.

• User enters credentials.

• Shell (e.g., Bash) is launched.

Shutting Down

Commands to safely stop the system:

• shutdown -h now: Halts the system immediately.

• shutdown -r now: Reboots immediately.

• init 0: Switches to Runlevel 0 (Shutdown).

• halt: Stops the CPU.

Numerical Example for Exam

Question: Calculate the Octal Permission code for a file where:

• Owner can Read, Write, and Execute.

• Group can Read and Execute.

• Others can only Read.

Answer:

1. Owner (rwx):

◦ Read (4) + Write (2) + Execute (1) = 7

2. Group (r-x):

◦ Read (4) + Write (0) + Execute (1) = 5

3. Others (r--):

◦ Read (4) + Write (0) + Execute (0) = 4

Result: The permission code is 754.

Command: chmod 754 filename

