MCA-105

DATABASE SYSTEMS

PREFACE

Dear Reader,

It is a privilege to present this comprehensive collection of RTU MCA Semester
Examination Notes, designed to cover the complete syllabus with clarity and
academic accuracy. Every concept, definition, explanation, and example has been
organized to support thorough understanding and effective exam preparation.

The purpose of these notes is to simplify complex topics and provide a reliable study
resource that can assist in both detailed learning and quick revision. Continuous effort
has been made to ensure correctness and relevance; however, learning grows when
readers engage, question, and explore further.

May these notes serve as a strong academic foundation and contribute meaningfully
to your preparation and future growth.

Warm regards,
Virendra Goura
Author

DISCLAIMER

This e-book has been created with utmost care, sincere effort, and extensive
proofreading. However, despite all attempts to avoid mistakes, there may still be some
errors, omissions, or inaccuracies that remain unnoticed.

This e-book is issued with the understanding that neither the author nor the publisher
shall be held responsible for any loss, damage, or misunderstanding arising from the
use of the information contained within.

All content provided is for educational and informational purposes only.

© 2025 — All Rights Reserved.

No part of this e-book may be reproduced, copied, scanned, stored in a retrieval
system, or transmitted in any form—whether electronic, mechanical, digital, or
otherwise—without prior written permission from the author/publisher.

Any unauthorized use, sharing, or distribution of the material is strictly prohibited and
may lead to civil or criminal liability under applicable copyright laws.

http://www.virendragoura.com/

MCA-105 Database System

Unit-1

Introduction: Overview of DBMS, Database System v/s File System, Architecture of
DBMS, Data models, Entity Relationship Diagram, Types of Keys, Integrity Rules, Data
Dictionary, Normalization (1NF, 2 NF, 3NF, BCNF, 4NF, 5NF), inclusion dependencies,
loss less join decompositions, Codd's Rules.

Unit-2

Transaction Management: Transactions: Concepts, ACID Properties, States Of
Transaction, Serializaibility, Conflict & View Serializable Schedule, Checkpoints,
Deadlock Handling.

nit-

Database Querying & Concurrency Control: Relational Algebra, Set Operations,
Relational Calculus, Steps In Query Processing, Algorithms For Selection, Sorting And
Join Operations, Understanding Cost Issues In Queries, Query Optimization,
Transformation Of Relational Expressions, Query Evaluation Plans.

Concurrency Control: Locks Based Protocols, Time Stamp Based Protocols,
Validation Based Protocol, Multiple Granularity, Multi-version Schemes.

Unit-4

Recovery System & Security: Failure Classifications, Recovery & Atomicity, Log
Base Recovery, Recovery with Concurrent Transactions, Shadow Paging, Failure with
Loss of Non-Volatile Storage, Recovery From Catastrophic Failure, Introduction to
Security & Authorization, Introduction to emerging Databases-OODBMS, ORDBMS,
Distributed database, Multimedia database, Special database-limitations of
conventional databases, advantages of emerging databases.

nit-

SQL and PL/SQL: Introduction to SQL: Characteristics of SQL, Advantages of SQL,
SQL data types and literals, Types of SQL commands, SQL operators, Tables, views
and indexes, Constraints, Group By and Having Clause, Order By Clause, Queries and
sub queries, Functions, PL/SQL basics, blocks, architecture, variables, constants,
attributes, character set, PL/SQL control structure, data types, conditional and
sequential control statements, cursors, exceptions, triggers, functions, procedures and
packages.

Introduction: Overview of DBMS, Database System v/s File System, Architecture of DBMS,
Data models, Entity Relationship Diagram, Types of Keys, Integrity Rules, Data Dictionary,

Normalization (INF, 2 NF, 3NF, BCNF, 4NF, 5NF), inclusion dependencies, loss less join
decompositions, Codd's Rules.

1. Intr ion

A Database Management System (DBMS) is software that enables users to store,
organize, retrieve, and manage data efficiently.

It provides a systematic and controlled environment to handle large volumes of related data.
In simple words, DBMS acts as an interface between the user and the database.

Example DBMS: MySQL, Oracle, SQL Server, PostgreSQL, MongoDB.

Need for DBMS

Before DBMS, organizations used file-based systems, which had major drawbacks:
. Data redundancy (same data stored multiple times)
. Lack of data security
. Difficulty in access and modification
. No concurrency control
. No data integrity

DBMS solves these issues through centralized control, data independence, and query
optimization.

2. Database System vs File System

Basis File System Database System (DBMS)
Data Storage Data stored in separate files Data stored in an integrated database
Data Redundancy High redundancy Controlled redundancy
Data Access Complex (requires user-written programs) | Easy (through SQL)
Security Minimal High-level user access control
Integrity Hard to maintain Enforced by integrity constraints
Backup & Recovery Manual Automatic and managed by DBMS
Concurrency Not supported Multiple users can access data simultaneously

Example Traditional file storage MySQL, Oracle, SQL Server

3. Architecture of DBMS

DBMS follows a three-level architecture, known as ANSI/SPARC Architecture.
It helps in achieving data abstraction and data independence.

1. Internal Level (Physical Level)

. Describes how data is physically stored on storage devices.

. Deals with indexes, pointers, and storage structures.

2. Conceptual Level (Logical Level)

. Describes what data is stored and the relationships among data.

. Independent of hardware or software.

3. External Level (View Level)

. The highest level of abstraction.

. Describes how individual users view the data (specific portions only).

Diagram: DBMS Three-Level Architecture

| External / View Level |

| Conceptual / Logical Level |

| Internal / Physical Level |

Data Independence

. Logical Data Independence: Changes in logical schema don’t affect external schema.

. Physical Data Independence: Changes in physical storage don’t affect logical
schema.

4. Data Models

A data model defines how data is logically structured, organized, and manipulated in a
database.

Types of Data Models:

Model Description Example

Data organized in tree structure; parent-

Hierarchical Model child relationship IBM IMS
Network Model Many-to-many relationship using pointers |[IDMS
Relational Model Data stored in tables (relations) MySQL, Oracle
Entity-Relationship Model Uses_diagl_’ams to represent entities and Conceptual design
(ER Model) relationships

ObjectDB,

Object-Oriented Model Combines objects with data and behavior .
Postgres-Object

5. Entity Relationship Diagram (ER Diagram

An ER Diagram is a visual representation of the entities, attributes, and relationships among
them in a database.

Basic Components of ER Diagram

Component Symbol / Representation Description
Entity Rectangle Represents an object (e.g., Student, Course)
Attribute Oval Property of an entity (e.g., Name, RolINo)
Relationship Diamond Association between entities (e.g., Enrolls)
Primary Key Underlined Attribute Uniquely identifies an entity
Cardinality 1:1, 1:N, M:N Defines participation between entities

Example ER Diagram

[STUDENT]—(Enrolls)—|[COURSE]

I |
RolLlNo CID

Name, Age Title, Credits

Meaning:
A student enrolls in many courses; each course may have many students (Many-to-Many).

6. Types of Keys

Keys are attributes or sets of attributes that identify records uniquely in a relation.

Key Type Description Example

Any combination of attributes that uniquely identifies a

Super Key P (RolINo, Name)

ﬁ:;didate Minimal set of attributes uniquely identifying a record RolINo

Primary Key Chosen candidate key to identify records uniquely RollNo

Alternate Key Remaining candidate keys after selecting primary EmailID

Foreign Key Attribute that refers to a primary key in another table CourselD in ENROLLS table
ﬁ:yposite Combination of attributes to form a unique key (StudentID, CourselD)

7. Integrity Rules

Integrity rules ensure accuracy, consistency, and validity of data.

1. Entity Integrity

. Primary key value cannot be NULL.
Example: Each student must have a unique RolINo.

2. Referential Integrity

. A foreign key must either match a primary key in another table or be NULL.
Example: A course record must exist before a student enrolls in it.

3. Domain Integrity

. Values must be within valid range or domain.
Example: Age must be between 0 and 120.

8. Data Dictionary

A Data Dictionary is a centralized repository of metadata (data about data).
It describes:

. Tables and columns
. Data types
. Constraints and relationships

. User privileges

Purpose:
. Acts as a reference guide for developers and administrators.
. Ensures consistency and documentation.

Example Table:

Table Name Column Name Data Type @Key Description
Student RollINo INT PK Unique Student ID
Student Name VARCHAR - Student Name
Course CID CHAR(5) PK Course ID
Course Title VARCHAR - Course Title

9. Normalization
Normalization is a process of organizing data to minimize redundancy and improve data

integrity.
It divides a large table into smaller related tables based on functional dependencies.

1NF (First Normal Form)

. Each column contains atomic (indivisible) values.
. No repeating groups allowed.

Example:

RolINo Name Courses

101 Veer DBMS, OS

— Convert to:

RolIlNo Name Course
101 Veer DBMS
101 Veer ()5

2NF (Second Normal Form)

. Must be in 1NF.

. No partial dependency (nhon-key attributes depend on only part of a composite key).

3NF (Third Normal Form)

. Must be in 2NF.

. No transitive dependency (non-key attribute depends on another non-key).

BCNF (Boyce-Codd Normal Form)

. Stronger form of 3NF.

. For every dependency X — Y, X should be a super key.

4NF (Fourth Normal Form)

. Removes multi-valued dependencies.

. A table should not have two or more independent multi-valued facts about an entity.

5NF (Fifth Normal Form)

. Removes join dependencies.

. Every join dependency in the table is implied by candidate keys.

10. Inclusion Dependencies

Inclusion dependency ensures that a set of values in one relation must appear in another
relation — often used for enforcing referential integrity.

Example:
Student(RolINo, Name)

Enroll(RolINo, CourselD)
Here, RolINo in Enroll must be included in RollNo of Student.

11. L | Join D m ition

When a relation is decomposed into smaller relations, data should not be lost after joining
them back.

Condition for Lossless Join:

If at least one of the decomposed relations contains a key of the original relation, the join is
lossless.

Example:
R(A, B, C)

Decompose into: R1(A, B) and R2(B, C)
— Common attribute B is a key — Lossless Join

12. Codd’s 12 Rules for RDBMS

Proposed by E.F. Codd, these rules define what qualifies as a true relational database

system.

Rule

Rule Name
No.

1 Information Rule

2 Guaranteed Access Rule

3 Systematic Null Values

4 Dynamic Online Catalog

Comprehensive Data Sub-
Language

6 View Updating Rule

High-Level Insert, Update,
Delete

8 Physical Data Independence

9 Logical Data Independence

10 Integrity Independence

11 Distribution Independence

12 Non-Subversion Rule

Description

Data represented as values in tables

Each data item accessible by table name, primary key,
column name

Supports NULL to represent missing information

Metadata stored in data dictionary

Must support at least one relational language (like SQL)

All theoretically updatable views must be updatable

Should handle multiple rows at once

Changes in storage do not affect schema

Changes in logical structure do not affect application

Integrity constraints stored in catalog

Database distribution should be transparent

Low-level access should not bypass integrity rules

UNIT 2- Transactions

Transactions: Concepts, ACID Properties, States Of Transaction, Serializaibility, Conflict
View Serializable Schedule, Checkpoints, Deadlock Handling.

1. Introduction

A transaction is a logical unit of work that performs a sequence of database operations
such as read, write, update, or delete.
Each transaction transforms the database from one consistent state to another.

Transactions are essential to ensure data consistency, isolation, and reliability, especially
in multi-user environments where multiple operations occur simultaneously.

Example:
A banking transaction that transfers 1000 from Account A to Account B involves:

T1:
read(A)
A=A-1000
write(A)
read(B)
B =B+ 1000
write(B)

If both parts execute successfully = transaction is complete.
If failure occurs midway — database must roll back to previous state.

2. Pr rti f Tran tions (ACID Pr rti

To maintain reliability, a transaction must satisfy the ACID properties — Atomicity,
Consistency, Isolation, and Durability.

Property Meaning Description
Atomicity “All or Nothing” Either the entire transaction executes or none of it does.
Consistency Eﬁ:grve Database The database must move from one valid state to another.
Isolation Independence Transactions must execute independently without
interference.
Durability Permanent Results Once committed, results must survive system failures.

Detailed Explanation

1. Atomicity

Ensures that a transaction is treated as a single, indivisible unit.
If one part fails, the entire transaction is rolled back.
Example: If debit succeeds but credit fails — rollback to restore both accounts.

2. Consistency

Every transaction must leave the database in a valid and consistent state.
All integrity constraints (like key or domain rules) must remain satisfied.

3. Isolation

Even if multiple transactions run concurrently, the intermediate results of one transaction
should not be visible to others.
Example: Two users withdrawing money from the same account must see consistent balance.

4. Durability

After a transaction is committed, changes are permanently stored in the database — even if a
crash occurs immediately after.

3. States of a Transaction

A transaction passes through multiple states during its execution.

Active - Partially Committed - Committed

i i
Failed « Aborted

State Description
Active Transaction is being executed.
zg;:iglilt{ed All operations executed; waiting for commit.
Committed Successful completion; all changes saved permanently.
Failed Some error occurred (system crash, constraint violation, etc.).
Aborted All changes undone using rollback; database restored to previous

consistent state.

Commit and Rollback Commands

. COMMIT: Makes all changes permanent.
. ROLLBACK: Undoes all changes of the current transaction.
Example:

BEGIN TRANSACTION
UPDATE Account SET Balance
UPDATE Account SET Balance
COMMIT;
If any update fails = ROLLBACK; restores both accounts.

Balance - 500 WHERE AccNo = 101;
Balance + 500 WHERE AccNo = 202;

4. Serializability

In a multi-user system, several transactions may execute concurrently.

DBMS must ensure that the final result is equivalent to some serial (one-by-one)
execution.

This property is called Serializability.

It is the primary concurrency control goal.

Types of Serializability

1. Conflict Serializability

2. View Serializability

4.1 Conflict Serializability

Two operations are said to conflict if:

. They belong to different transactions.

. They access the same data item.

. At least one of them is a write operation.
Example of Conflicting Operations:

T1: Read(A)
T2: Write(A)

Rules to Check Conflict Serializability

1. Construct a precedence (serialization) graph:
° Nodes — transactions
° Edge Ti — Tj if Ti's operation precedes and conflicts with Tj

2. If the graph is acyclic (no cycles) — schedule is conflict serializable.

Example:
Schedule:

T1: R(A), W(A)
T2: R(A), W(A)
Graph:

T1 — T2 (since T1 writes A before T2 reads/writes A)
No cycles —» Conflict Serializable.

4.2 View Serializability

Two schedules are view-equivalent if:

1. Each transaction reads the same initial value of data in both schedules.

2. Each transaction performs the same final write.
3. The final result of both schedules is identical.

If a schedule is view-equivalent to a serial schedule, it is view serializable.

Difference Between Conflict & View Serializability

Aspect Conflict Serializability View Serializability
Basis Order of conflicting operations Read and write visibility
Test Uses precedence graph Uses view equivalence rules
Complexity Easier to check Harder to check
Relation All conflict serializable schedules are view serializable Reverse not always true

5. Checkpoints

A checkpoint is a point in time where the DBMS saves the current state of the database into
stable storage.
It acts as a snapshot to help the recovery system restore the database after failure.

Purpose of Checkpoints
. To reduce recovery time after a crash.
. To avoid redoing all transactions from the beginning.

. To mark safe points in the transaction log.

Checkpoint Procedure

1. Stop accepting new transactions.
2. Ensure all committed transactions are written to disk.
3. Record a checkpoint entry in the log.

4. Resume transaction execution.

Example:

<Checkpoint T1, T2>
<Transaction Commit T1>
<Crash>

Only transactions active after checkpoint (T2) are considered during recovery.
6. Deadlocks in DBMS

A deadlock occurs when two or more transactions are waiting indefinitely for resources
held by each other, preventing further progress.

Example
T1 locks data A — waits for B
T2 locks data B — waits for A
— Deadlock
Conditions for Deadlock (Coffman Conditions)
1. Mutual Exclusion: Resources cannot be shared.
2. Hold and Wait: A transaction holds one resource while waiting for another.

3. No Preemption: Resources cannot be forcibly taken away.

4. Circular Wait: Circular chain of waiting transactions exists.

Deadlock Handling Methods

1. Deadlock Prevention

Prevent occurrence by breaking one of the four conditions.

Method Description

Wait-Die Older transaction waits; younger aborts.
Wound-Wait Older transaction preempts (wounds) younger one.
Timeouts Abort transaction if waiting too long.

2. Deadlock Detection

. Maintain a wait-for graph where each node is a transaction.
. An edge Ti — Tj exists if Ti is waiting for a resource held by Tj.
. If the graph contains a cycle - deadlock detected.

3. Deadlock Recovery

. Abort one or more transactions to break cycle.
. Choose victim based on: cost, progress, and priority.
. Rollback victim transaction to previous checkpoint.

Example of Wait-For Graph

T1 -T2
T2 = T3
T3 - Tl <+ Cycle indicates Deadlock

UNIT 3- Database Querying & Concurrency Control

Database Querying & Concurrency Control: Relational Algebra, Set Operations,
Relational Calculus, Steps In Query Processing, Algorithms For Selection, Sorting And
Join Operations, Understanding Cost Issues In Queries, Query Optimization,
Transformation Of Relational Expressions, Query Evaluation Plans.

Concurrency Control: Locks Based Protocols, Time Stamp Based Protocols,
Validation Based Protocol, Multiple Granularity, Multi-version Schemes.

DATABASE QUERYING
1. Intr tion to Datab rvin

Database querying is the process of retrieving required data from a database using formal
query languages.
A query specifies:

. What data is required

. From where it is required

. Under what conditions

The DBMS converts user queries into internal query representations and executes them
efficiently.

2. Relational Algebra

Relational Algebra is a procedural query language that uses a collection of operations on
relations to retrieve data from a relational database.

It specifies how the query is to be executed.

2.2 Features of Relational Algebra

1. Procedural language

2. Based on set theory

3. Closed under operations

4. Input and output are relations

5. Used internally by DBMS for query optimization

2.3 Basic Relational Algebra Operations
1. Selection (o)

Selection operation selects rows (tuples) from a relation that satisfy a given condition.

Syntax

O condition (Relation)
Example
EMP(EmpID, Name, Salary, Dept)
Select employees with salary > 40000:

O Salary>40000(EMP)

Explanation

. Does not change number of columns

. Filters rows based on condition

2. Projection (n)

Projection operation selects specific columns (attributes) from a relation and removes
duplicate tuples.

Syntax

T Attributel, Attribute2 (Relatz’on)
Example

7TName,Dept (EMP)

Explanation

. Reduces number of columns

. Duplicate rows are eliminated

3. Union (u)

Union combines tuples of two relations into one relation.

Conditions for Union

1. Same number of attributes

2. Same domain

3. Same order of attributes

RuS

4. Set Difference (-)
Returns tuples that exist in one relation but not in another.
R-S
5. Cartesian Product (x)
Combines each tuple of one relation with every tuple of another relation.

R xS

Explanation

. Produces large intermediate results

. Used before join operations

6. Rename (p)

Rename operation changes the name of a relation or its attributes.

PNewName (Relation)

2.4 Derived Relational Algebra Operations

7. Join (X))

Join operation combines related tuples from two relations based on a condition.

Types of Join

1. Theta Join - uses comparison operators
2. Equi Join - uses equality condition
3. Natural Join - automatically joins common attributes

Example

STUDENT X ENROLLMENT

8. Division (=)

Division operation is used to answer “for all” type queries.

Example

Find students enrolled in all courses:

ENROLL(Student, Course) = COURSE(Course)

3. Set Operations

Set operations treat relations as mathematical sets.

Types of Set Operations

1. Union
2. Intersection
3. Difference

Properties

. Relations must be union-compatible

. Duplicate tuples are removed automatically

4. Relational Calculus
Relational Calculus is a non-procedural query language that specifies what data to

retrieve, not how to retrieve it.

4.1 Tuple Relational Calculus (TRC)
Form
{t| P(t)}

Example

{t |t e STUDENT At.Age > 20}

4.2 Domain Relational Calculus (DRC)
Form

{< 21,29 >| P(x1,22)}

5. Steps in Query Processing

Query processing is the process by which a DBMS converts a user query into an efficient
execution plan.

Step 1: Parsing and Translation

. Syntax checking
. Semantic checking

. SQL — Relational Algebra

Step 2: Query Optimization
. Generate alternative execution plans

. Choose plan with minimum cost

Step 3: Query Evaluation

. Execute optimized plan

. Return result to user

6. Algorithms for Selection Operation
1. Linear Search Algorithm

. Scan all blocks
. Cost = b block accesses

. Used when no index exists

2. Binary Search Algorithm

. File must be sorted

. Cost = log, b

3. Index-Based Selection

. Uses primary or secondary index

. Fastest selection method

7. Algorithms for Sorting
External Sorting (Merge Sort)

Working

1. Create sorted runs in memory
2. Merge sorted runs

Cost Formula

2blog,, b

8. Algorithms for Join Operations

1. Nested Loop Join

. For each tuple of outer relation, scan inner relation

Cost = b, +n, X b

2. Block Nested Loop Join

. Uses blocks instead of tuples
br

3. Sort-Merge Join

. Sort both relations

. Merge matching tuples

4. Hash Join

. Partition relations using hash function

. Join matching partitions

. Understandin I in ri

Major Cost Factors
1. Disk I/O (highest cost)
2. CPU processing time
3. Memory access

4. Communication overhead

Cost Measurement

. Number of disk seeks

. Number of block transfers

10. Query Optimization

Query optimization is the process of selecting the most efficient execution plan for a query.
Types of Query Optimization

1. Heuristic Optimization

. Apply selection early
. Apply projection early

. Reduce intermediate relations

2. Cost-Based Optimization

. Uses statistical information

. Chooses minimum cost plan

11. Transformation of Relational Expressions

Transformation rewrites relational algebra expressions into equivalent but more efficient
forms.

Important Rules

1. Selection Pushdown
0c1/\c2(R) = Ucl(Ucz(R))
2. Join Commutativity
RS =S5S><R
3. Join Associativity

(R S)aT =R (S T)

12. Query Evaluation Plans

A query evaluation plan describes how a query will be executed using specific algorithms.

Types of Plans
1. Logical Query Plan
° Based on relational algebra
2. Physical Query Plan

° Specifies access paths and algorithms

Query Tree Example

Join
/ \
Selection Projection
| |
EMPLOYEE DEPARTMENT

CONCURRENCY CONTROL

1. Tran ion Isolation an ncurren ntrol

1.1 Transaction Isolation Property

Isolation is one of the ACID properties of a transaction.

Isolation means:

Each transaction should execute as if it were the only transaction in the system, even
though many transactions may run concurrently.

Concurrency control mechanisms are responsible for enforcing isolation.

1.2 Schedules
A schedule is an ordering of read/write operations of multiple transactions.

Types of Schedules

1. Serial Schedule
° Transactions execute one after another
° No interleaving
° Always correct but inefficient
2. Concurrent (Non-Serial) Schedule
° Operations are interleaved
° Improves performance

° Needs concurrency control

1.3 Serializability
Conflict Serializability

A schedule is conflict serializable if it can be transformed into a serial schedule by swapping
non-conflicting operations.

Conflicting operations:
. Read-Write
. Write-Read
. Write-Write

v Two-phase locking ensures conflict serializability

View Serializability

A schedule is view serializable if it produces the same read-from relationships and final
writes as a serial schedule.

v More general than conflict serializability
® Hard to test in practice

2. Lock-Based Protocols
2.1 Lock Granularity Trade-Off
Coarse Granularity Locks
. Lock entire table or database
. Fewer locks
. Less concurrency
Fine Granularity Locks
. Lock rows or records
. More locks
. Higher concurrency
Multiple granularity locking balances this trade-off
2.2 Lock Conversion (Upgrading and Downgrading)
Lock Upgrade
. S-lock = X-lock
. Requires no other S-locks
Lock Downgrade
. X-lock = S-lock
. Allowed safely
v Lock upgrades may cause deadlock
2.3 Deadlock
Necessary Conditions for Deadlock
1. Mutual exclusion
2. Hold and wait
3. No preemption

4. Circular wait

If any condition is removed — deadlock cannot occur

Deadlock Detection (Wait-for Graph)

. Nodes represent transactions
. Edge Ti — Tj means Ti waits for Tj

. Cycle = deadlock exists

Deadlock Recovery

. Abort one transaction
. Release locks

. Restart transaction

2.4 Starvation

A transaction waits indefinitely because other transactions keep getting priority.
Occurs in:
. Timestamp protocols

. Deadlock prevention schemes

3. Timestamp-Based Protocols

3.1 Why Timestamps Work

. Enforces a global order
. Transactions behave as if executed in timestamp order
. Older transactions have higher priority

This eliminates circular wait, hence no deadlock.

3.2 Thomas Write Rule (Important Theory)
Problem in Basic Timestamp Protocol

Some writes are unnecessary and cause aborts.

Thomas Write Rule

If:

TS(T) < W_TS(X)

Then:
. Ignore the write instead of aborting

v Reduces aborts
v Still preserves serializability

3.3 Timestamp Protocol vs Locking

Aspect Timestamp Locking
Deadlock Impossible Possible
Waiting No Yes
Abort Frequent Less
Overhead Timestamp mgmt Lock mgmt

4. Validation-Based Protocol
4.1 Optimistic Philosophy

Validation protocol is based on the assumption:
“Most transactions do not conflict.”

Instead of preventing conflicts, it detects conflicts at commit time.

4.2 Read and Write Sets
Each transaction maintains:
. Read Set (RS): data items read
. Write Set (WS): data items written

Validation ensures:

WS(T;) N RS(T;) =0

4.3 When Validation Protocol Works Best

v Read-heavy workloads
v Short transactions
v Low contention environments

% Not suitable for banking or reservation systems

5. Multiple Granularity Locking

5.1 Lock Hierarchy Tree

Database

|
Table

|
Page
|

Record

Locks must be acquired top-down and released bottom-up.

5.2 Intention Lock Compatibility
Intention locks prevent:

. A transaction from locking a higher-level object

. While another transaction holds a lower-level conflicting lock

Compatibility Matrix (Expanded)

Held \ Requested IS 1IX S SIX X
IS 4 v v Vv x
IX 4 4 x x %
S 4 x v % x
SIX 4 x x x %
X x x x x

6. Multiversion Concurrency Control
6.1 Why MVCC Is Needed

Traditional locking:
. Blocks readers during writes
MVCC:

. Allows readers and writers to proceed without blocking

6.2 Version Visibility Rules

A transaction sees:

. The latest committed version

. With timestamp < transaction’s timestamp

6.3 Snapshot Isolation
Each transaction sees a snapshot of the database

. Prevents dirty and non-repeatable reads
. Used in PostgreSQL, Oracle

A Does NOT guarantee full serializability (write skew possible)

6.4 Garbage Collection in MVCC

Old versions:
. Consume storage

. Must be removed when no transaction needs them

UNIT 4- Recovery System & Security

Recovery System & Security: Failure Classifications, Recovery & Atomicity, Log
Base Recovery, Recovery with Concurrent Transactions, Shadow Paging, Failure with
Loss of Non-Volatile Storage, Recovery From Catastrophic Failure, Introduction to
Security & Authorization, Introduction to emerging Databases-OODBMS, ORDBMS,
Distributed database, Multimedia database, Special database-limitations of
conventional databases, advantages of emerging databases.

1. Intr ion R ver m

A Recovery System in a Database Management System (DBMS) is responsible for restoring
the database to a correct and consistent state after a failure occurs. Failures may occur due
to hardware crashes, software errors, power failures, or system crashes.
The main goal of recovery is to ensure:

. Atomicity - Transactions are either fully completed or fully undone.

. Durability - Once a transaction is committed, its changes are permanent.

Without a recovery system, data loss and inconsistency can occur, which may damage the
reliability of the database.

2. Failure Classifications

Failures in a Database Management System (DBMS) are classified based on their cause,
scope, and impact on data consistency. Understanding failure classification helps the
recovery system decide the correct recovery action.

2.1 Transaction Failure

A transaction failure occurs when a transaction is unable to complete its execution
successfully and must be terminated before completion.

Causes of Transaction Failure

L. Logical Errors
These errors occur due to incorrect logic in the transaction.

° Invalid input values
° Violation of integrity constraints
° Arithmetic errors such as division by zero

2. system Errors
These errors occur due to system conditions.

° Deadlock between transactions
° Insufficient memory or CPU resources

° Forced termination by the DBMS

Effect of Transaction Failure

. Only the failed transaction is rolled back.
. All operations performed by that transaction are undone.

. Other active or committed transactions are not affected.

2.2 System Failure

A system failure occurs when the entire database system crashes due to hardware or
software problems.

Causes of System Failure
. Power failure
. Operating system crash
. CPU or main memory failure
Effect of System Failure
. All data stored in main memory (RAM) is lost.
. Data stored on disk (secondary storage) remains intact.

. Recovery is required using logs after system restart.

2.3 Media Failure

A media failure occurs when the storage media itself is damaged or corrupted.

Causes of Media Failure

. Disk head crash

. Disk corruption

. Physical damage due to fire, water, or hardware defects
Effect of Media Failure

. Loss of data stored on the disk.

. Normal recovery is not possible using logs alone.

. Backup restoration is required.

2.4 Communication Failure

Communication failure mainly occurs in distributed database systems where data is stored
at multiple locations.

Causes of Communication Failure

. Network failure
. Message loss or delay
. Network partitioning

Effect of Communication Failure

. Incomplete or partial execution of distributed transactions.

. Data inconsistency across sites may occur.

3. Recovery and Atomicity

Atomicity

Atomicity is one of the ACID properties of transactions. It ensures that:
. A transaction is treated as a single, indivisible unit.
. Either all operations are performed, or none are performed.

. If a transaction fails, all its changes are completely undone.

Need for Atomicity

Without atomicity:
. Partial updates may remain in the database.
. Database consistency rules may be violated.
. Incorrect or unreliable data may be stored.

Atomicity ensures that the database always moves from one consistent state to another.

Recovery Mechanism for Atomicity

To maintain atomicity, the recovery system uses:
. Log files to record changes
. Checkpoints to reduce recovery time
. Undo operations for failed transactions
. Redo operations for committed transactions

These mechanisms ensure that incomplete transactions do not affect database correctness.

4. Log-B R ver

Log-based recovery is the most commonly used recovery technique in DBMS.

4.1 Transaction Log

A transaction log is a sequential file that records every modification made to the database.
Each log record contains:
. Transaction ID

. Name of the data item

Old value (before update)
. New value (after update)

The log is stored on stable storage so that it survives system failures.

4.2 Write-Ahead Logging (WAL)

Write-Ahead Logging is a rule that ensures reliable recovery.

Principle of WAL

. Before any database change is written to disk, the corresponding log record must be
written first.

. This guarantees that recovery information is always available.

Benefit

. Ensures correctness during system crash recovery.

. Supports both undo and redo operations.

4.3 Undo and Redo Operations
Undo Operation

. Used for aborted or incomplete transactions.
. Restores the database using old values from the log.

Redo Operation

. Used for committed transactions.

. Reapplies changes using new values from the log.

5. Recovery with Concurrent Transactions

When multiple transactions execute simultaneously, recovery becomes more complex.

Problems in Concurrent Execution

. Interleaved read/write operations

. Partial commits during system failure

. Difficulty in determining transaction status

Solution

. Each transaction is assigned a unique transaction ID.
. Logs record the exact order of operations.
. During recovery:

° Undo all uncommitted transactions.

° Redo all committed transactions.

This ensures consistency and isolation in concurrent environments.

. Shadow Pagin

Shadow paging is a recovery technique that does not use log files. Instead, it maintains two
page tables.

Working of Shadow Paging

. A shadow page table points to original database pages.
. A current page table is used for updates.
. Updated pages are written to new disk locations.

On Commit

. Current page table becomes the new shadow page table.

On Failure

. The system uses the old shadow page table to restore the database.

Advantages of Shadow Paging

. No log file required
. Fast recovery

. Simple undo operation

Disadvantages of Shadow Paging

. Difficult to support concurrent transactions

. Inefficient for large databases

. Increased disk usage

7. Failure with Loss of Non-Volatile Storage

Non-volatile storage such as disks is assumed to be permanent, but failures can still occur.

Causes

. Disk crash
. Fire, flood, or natural disasters

. Severe hardware damage

Recovery Method

. Restore the database from the most recent backup.

. Apply log files if available to recover recent updates.

8. Recovery from Catastrophic Failure

A catastrophic failure destroys both:
. Main memory

. Secondary storage

Recovery Steps

1. Restore the last full backup.
2. Apply archived logs to redo committed transactions.

3. Restart database services.

Importance of Backups

. Regular backups reduce data loss.
. Off-site backups protect against natural disasters.

. Essential for disaster recovery planning.

9. Introduction to Security
Database Security

Database security protects data from:

. Unauthorized access
. Data theft

. Accidental or intentional modification

Security Goals

1. Confidentiality - Data is accessible only to authorized users.
2. Integrity - Data remains accurate and consistent.

3. Availability - Data is accessible when needed.

10. Authorization

Authorization defines who can access the database and what actions they can perform.

Types of Privileges

. SELECT - Read data
. INSERT - Add new data
. UPDATE - Modify data

. DELETE - Remove data

Authorization Mechanism

. User accounts
. Roles

. Access control lists (ACLs)

11. Intr tion to Emerging Datab

Traditional database systems such as Relational Database Management Systems
(RDBMS) were designed mainly to store and process simple, structured data like numbers
and text. These databases work very well for business applications such as banking, payroll,
and inventory systems. However, with the growth of modern applications, traditional databases
started facing many limitations.

Modern applications require handling complex data types such as images, audio, video,
geographic data, and scientific data. They also require high scalability, distributed access,
and object-oriented support, which conventional databases cannot efficiently provide.

To overcome these limitations, Emerging Databases were developed. Emerging databases
are advanced database systems designed to manage complex, large-scale, and multimedia
data efficiently.

Key reasons for emerging databases:

. Increase in multimedia and unstructured data

. Growth of distributed and internet-based applications

. Need for object-oriented data modeling

. Requirement of high performance and scalability
Examples of emerging databases include:

. Object-Oriented Databases (OODBMS)

. Object-Relational Databases (ORDBMS)

. Distributed Databases

. Multimedia Databases

12. Object-Oriented Database Management System (OODBMS)

An Object-Oriented Database Management System (OODBMS) is a database system that
stores data in the form of objects, similar to the way data is represented in object-oriented
programming languages such as Java and C++.

In OODBMS, data and its related operations are stored together as objects, unlike relational
databases where data and operations are separate.

Features of OODBMS
1. Encapsulation

Encapsulation means combining data and methods into a single unit called an object.

The internal details of an object are hidden, and data can be accessed only through defined
methods.

Benefit:

Improves data security and reduces complexity.

2. Inheritance

Inheritance allows a new class (child class) to acquire properties and methods of an existing
class (parent class).

Benefit:

Promotes code reusability and reduces redundancy.

3. Polymorphism

Polymorphism allows the same method name to perform different operations based on the
object that invokes it.

Benefit:
Provides flexibility and easier system expansion.

Advantages of OODBMS
1. Handles Complex Data Easily

OODBMS can store complex data types such as images, audio, video, and CAD data without
breaking them into tables.

2. Supports Multimedia Data

It is well-suited for applications that require multimedia data storage, such as medical imaging
and digital libraries.

3. Better Representation of Real-World Objects
Objects closely represent real-world entities, making database design more natural and

intuitive.

13. Object-Relational Datab Man ment tem RDBM

An Object-Relational Database Management System (ORDBMS) is an advanced
database system that combines the features of relational databases with object-oriented
concepts.

It extends the traditional relational model by adding support for complex data types and
object-oriented features while still using tables and SQL.

Features of ORDBMS
1. User-Defined Data Types

ORDBMS allows users to define their own data types, making it possible to store complex data
such as images or structures.

2. Inheritance

Tables can inherit attributes from other tables, similar to class inheritance in object-oriented
programming.

3. Methods in Tables

ORDBMS allows functions or methods to be associated with tables and data types.

Advantages of ORDBMS
1. Better Than RDBMS for Complex Applications

ORDBMS handles complex data and relationships more efficiently than traditional RDBMS.

2. Compatible with SQL

Since ORDBMS supports SQL, it is easier to migrate from RDBMS without rewriting entire
applications.

3. Combines Best of Both Worlds

It offers relational simplicity along with object-oriented power.

14. Distributed Database

A Distributed Database is a collection of databases that are physically stored at different
locations but logically appear as a single database to users.

The databases are connected through a network and managed by a Distributed Database
Management System (DDBMS).

Advantages of Distributed Databases
1. High Availability

If one site fails, other sites can continue working, improving system reliability.

2. Scalability

New sites can be added easily without affecting existing systems.

3. Fault Tolerance

Failure of one node does not stop the entire database system.

Challenges of Distributed Databases
1. Data Consistency

Maintaining consistent data across multiple locations is complex and challenging.

2. Network Dependency

System performance depends heavily on network reliability and speed.

15. Multimedia D
Definition

A Multimedia Database is a database system designed to store and manage multimedia
data such as:

. Images
. Audio
. Video

. Graphics

These databases require special techniques for storage, indexing, and retrieval due to large
data size.

Applications of Multimedia Databases
1. Medical Systems

Used for storing X-rays, MRI scans, and patient videos.

2. Entertainment

Used in movie streaming platforms, music applications, and gaming systems.

3. Digital Libraries

Used for storing digital books, videos, photographs, and archives.

16. Limitations of Conventional Databases

Traditional databases suffer from several limitations in modern environments:

1. Poor Handling of Complex Data

They are not designed to manage multimedia or unstructured data efficiently.

2. No Multimedia Support

Storing images, audio, and video is inefficient and slow.

3. Limited Scalability

Conventional databases struggle with large-scale distributed systems.

4. Weak Performance for Unstructured Data

Text, video, and graphical data cannot be efficiently indexed or queried.

17. Advantages of Emerging Databases

Emerging databases provide powerful solutions to modern data challenges:

1. Support for Complex and Multimedia Data

They can efficiently store and manage images, videos, and complex objects.

2. Better Performance

Optimized storage and retrieval techniques improve speed.

3. Scalability

They can easily handle large and distributed datasets.

4. Flexibility

Support multiple data models and application requirements.

5. Support for Modern Applications

Ideal for applications involving Artificial Intelligence, Big Data, cloud computing, and
multimedia systems.

UNIT 5- SQL and PL/SQL
SQL and PL/SQL: Introduction to SQL: Characteristics of SQL, Advantages of SQL, SQL
data types and literals, Types of SQL commands, SQL operators, Tables, views and indexes,
Constraints, Group By and Having Clause, Order By Clause, Queries and sub queries,
Functions, PL/SQL basics, blocks, architecture, variables, constants, attributes, character set,

PL/SQL control structure, data types, conditional and sequential control statements, cursors,
exceptions, triggers, functions, procedures and packages.

1. Intr tion to SQL

SQL (Structured Query Language) is a standard database language used to interact with
relational databases. It allows users to define database structure, manipulate data, retrieve
information, control access, and manage transactions. SQL hides internal complexity and
provides a simple interface to users.

SQL is widely used because it is easy, powerful, and portable across different database
systems.

SQL is a declarative (non-procedural) language, meaning users specify what data is
needed, not how it should be retrieved. It works with relational databases where data is
stored in tables consisting of rows and columns. SQL acts as a bridge between the user/
application and the database engine.

SQL is supported by almost all major DBMS such as MySQL, Oracle, PostgreSQL, SQL Server,
etc., making it highly portable.

2. Characteristics of SQL

. SQL is a non-procedural language, users specify what data is required
. SQL commands are simple and readable

. SQL is case-insensitive

. SQL works on tables (relations)

. SQL supports DDL, DML, DCL, TCL, and DQL

. SQL allows multi-user access with security

. Non-procedural: Reduces complexity for users.

. Readable syntax: English-like commands improve usability.

. Case-insensitive: SELECT and select behave the same.

. Table-based: Data is always processed in relational form.

. Command classification: Makes database management organized.

. Multi-user & secure: Supports permissions, roles, and concurrency control.

3. Advantages of SQL

. Faster data retrieval
. Easy to write and maintain
. Handles large amount of data
. Supports data integrity and security
. Used in almost all DBMS products
SQL optimizes queries internally, ensuring high performance. Built-in constraints, keys, and

permissions maintain data accuracy and safety. Because SQL is standardized, learning it
once allows usage across multiple database platforms.

4. LD T nd Literal

4.1 SQL Data Types

Numeric Data Types

INT

FLOAT

DECIMAL

Example:

salary INT;

Character Data Types
CHAR

VARCHAR

TEXT

Example:

name VARCHAR(50);
Date and Time Data Types

DATE

TIME
TIMESTAMP
Example:

dob DATE;

Data types define the kind of data a column can store.
. INT: Stores whole numbers.
. FLOAT/DECIMAL: Stores fractional values.
. CHAR: Fixed-length strings.

. VARCHAR: Variable-length strings.

. DATE/TIME: Used for temporal data.

Correct data type selection improves storage efficiency and performance.

4.2 SQL Literals

Literals are fixed constant values.
Examples:

'Database’

1000

'2025-01-01'

Literals represent actual values written directly in SQL queries.
. String literals are enclosed in single quotes

. Numeric literals are written directly

. Date literals follow standard date format

5. Types of SQL Commands

5.1 DDL (Data Definition Language)
Used to define database structure.
CREATE
CREATE TABLE student (

roll INT PRIMARY KEY,

name VARCHAR(30),
marks INT

)i
ALTER

ALTER TABLE student ADD age INT;

DROP
DROP TABLE student;
DDL commands define and modify database schema. Changes made by DDL are permanent
and auto-committed.
Output:
. Table created
. Table altered

. Table dropped

5.2 DML (Data Manipulation Language)

INSERT

INSERT INTO student VALUES (1, 'Amit', 85);
UPDATE

UPDATE student SET marks = 90 WHERE roll = 1;
DELETE

DELETE FROM student WHERE roll = 1;

DML commands modify data inside tables. These operations can be rolled back if not
committed.

Output:
. 1 row inserted
. 1 row updated

. 1 row deleted

5.3 DQL (Data Query Language)

SELECT * FROM student;

DQL retrieves data from database tables without modifying it.

Output (example):

roll name marks

1 Amit 90

5.4 DCL (Data Control Language)

GRANT SELECT ON student TO userl;
REVOKE SELECT ON student FROM useri;

DCL controls user access and permissions, ensuring database security.

5.5 TCL (Transaction Control Language)

COMMIT;
ROLLBACK;
SAVEPOINT sp1;

TCL manages transactions to maintain data consistency and atomicity.

6. SQL Operators

Arithmetic Operators

SELECT marks + 5 FROM student;
Output: Marks increased by 5.

Relational Operators

SELECT * FROM student WHERE marks > 60;
Output: Rows with marks greater than 60.

Logical Operators

SELECT * FROM student WHERE marks > 60 AND age > 18;
Output: Rows satisfying both conditions.

Special Operators

SELECT * FROM student WHERE name LIKE 'A%';
Output: Names starting with A.

7. Tabl View nd Index

7.1 Tables

A table stores data in rows and columns.

Tables are the fundamental storage units in relational databases.

7.2 Views

CREATE VIEW topper AS
SELECT name, marks FROM student WHERE marks > 80;

Views are virtual tables that do not store data physically.
Output:

Shows only students scoring above 80.

7.3 Indexes

CREATE INDEX idx_marks ON student(marks);

Indexes improve search speed by minimizing disk access.
8. Constraints

CREATE TABLE employee (
emp_id INT PRIMARY KEY,
name VARCHAR(30) NOT NULL,
salary INT CHECK (salary > 0),
dept_id INT,

UNIQUE(name)

)i

Types:
. NOT NULL
. UNIQUE
. PRIMARY KEY
. FOREIGN KEY
. CHECK
. DEFAULT

Constraints enforce data integrity rules and prevent invalid data entry.

9. GROUP BY and HAVING Clause

SELECT dept_id, COUNT(*)
FROM employee

GROUP BY dept_id

HAVING COUNT(*) > 3;

GROUP BY groups rows
HAVING filters grouped data

e GROUP BY forms groups.
e HAVING applies conditions on aggregated data.

Output: Departments having more than 3 employees.

10. ORDER BY Clause

SELECT * FROM student ORDER BY marks DESC;
Sorts result set in ascending or descending order.

Output: Students sorted by marks (highest first).

11, eries and Subguerie

SELECT name
FROM employee
WHERE salary > (SELECT AVG(salary) FROM employee);

Subqueries are nested queries used for comparison and filtering.

Output: Employees earning above average salary.

12. SQL Functions

Aggregate Functions

SELECT AVG(marks) FROM student;
Output: Average marks.

Scalar Functions

SELECT UPPER(name) FROM student;
Output: Names in uppercase.

13. Intr ion PL L

PL/SQL (Procedural Language/Structured Query Language) is a procedural extension of SQL
developed by Oracle. It allows programmers to write structured programs that include
procedural logic such as conditions, loops, variables, cursors, and exception handling directly
inside the database.

PL/SQL enhances the capabilities of SQL by combining SQL statements with programming
constructs. This makes database applications more powerful, efficient, secure, and

modular. Since PL/SQL code executes on the database server, it reduces network traffic and
improves overall performance.

14. PL/SQL Block Structure

PL/SQL programs are written in the form of blocks. A block is the basic unit of a PL/SQL
program.

Example:

DECLARE
v_marks NUMBER;
BEGIN
v_marks := 80;
DBMS_OUTPUT.PUT_LINE(v_marks);
END;
Structure of PL/SQL Block:

1. DECLARE - Used for declaring variables, constants, cursors, and exceptions.
2. BEGIN - Contains executable SQL and PL/SQL statements.
3. END - Marks the end of the PL/SQL block.

Output:

80

15. Variabl n nstants in PL L

Variables are used to store data temporarily during program execution, while constants store
fixed values that cannot be changed once assigned.

Example:

DECLARE
pi CONSTANT NUMBER := 3.14;
radius NUMBER := 5;
BEGIN
DBMS_OUTPUT.PUT_LINE(pi * radius * radius);
END;
Here, pi is declared as a constant and radius is a variable.

Output:

78.5

16. PL/SQL Attributes

PL/SQL provides special attributes to maintain consistency between variables and database
table columns.

Example:

v_salary employee.salary%TYPE;
emp_row employee%ROWTYPE;

e %TYPE assigns the data type of a table column to a variable.
e %~ROWTYPE allows a variable to store an entire row of a table.

These attributes ensure data type consistency and reduce errors when table structures
change.

17. PL L ntrol Structur

Control structures are used to control the flow of execution in PL/SQL programs.

IF Statement Example:

IF marks >= 40 THEN
result := 'PASS';
ELSE
result := '"FAIL';
END IF;
This conditional statement checks whether the marks are greater than or equal to 40 and
assigns the result accordingly.

LOOP Example:

FORiIN 1..5 LOOP
DBMS_OUTPUT.PUT_LINE(i);
END LOOP;

Output:

uabwNE=

18. Cursors

A cursor is a pointer that allows row-by-row processing of query results in PL/SQL. Cursors are
especially useful when a query returns multiple rows.

Example:

DECLARE
CURSOR c1 IS SELECT name FROM student;
v_name student.name%TYPE;
BEGIN
OPEN c1;
FETCH c1 INTO v_name;
CLOSE c1;
END;

Explanation:

. The cursor cl stores the result of the SELECT query.
. Rows are fetched one at a time using FETCH.

Cursors enable fine-grained control over query result processing.

19. Ex tion

Exceptions are runtime errors that occur during the execution of a PL/SQL program. PL/SQL
provides an exception handling mechanism to handle such errors gracefully.

Example:

BEGIN
x := 10/0;
EXCEPTION
WHEN ZERO_DIVIDE THEN
DBMS_OUTPUT.PUT_LINE('Error');
END;

Output:

Error
Here, the division by zero error is handled using a predefined exception.

20. Triggers

A trigger is a special PL/SQL block that automatically executes when a specific database event
occurs, such as INSERT, UPDATE, or DELETE.

Example:

CREATE OR REPLACE TRIGGER trg_before_insert
BEFORE INSERT ON student
FOR EACH ROW
BEGIN

DBMS_OUTPUT.PUT_LINE('Insert Trigger Fired");
END;

Triggers are used to enforce business rules, maintain data integrity, and perform automatic
actions.

21. Functions

A function is a named PL/SQL block that performs a specific task and returns a value.

Example:

CREATE FUNCTION square(n NUMBER)
RETURN NUMBER IS
BEGIN
RETURN n*n;
END;

Output:

Returns the square of the given number.

Functions are commonly used in SQL queries and expressions.

22. Pr r

A procedure is a stored PL/SQL block that performs a specific task but does not return a
value.

Example:

CREATE PROCEDURE show_msg IS
BEGIN

DBMS_OUTPUT.PUT_LINE('Hello PL/SQL");
END;

Output:

Hello PL/SQL
Procedures are used to perform repetitive tasks and improve code reusability.

23. Packages

A package is a collection of related procedures, functions, variables, and cursors stored
together as a single unit.

Example:

CREATE PACKAGE math_pkg IS
FUNCTION add(a NUMBER, b NUMBER) RETURN NUMBER;
END;

Packages improve modularity, performance, security, and maintainability of PL/SQL
programs.

