
MCA-102 
OBJECT ORIENTED 
PROGRAMMING WITH C++



PREFACE 

Dear Reader, 

It is a privilege to present this comprehensive collection of RTU MCA Semester 
Examination Notes, designed to cover the complete syllabus with clarity and 
academic accuracy. Every concept, definition, explanation, and example has been 
organized to support thorough understanding and effective exam preparation. 

The purpose of these notes is to simplify complex topics and provide a reliable study 
resource that can assist in both detailed learning and quick revision. Continuous effort 
has been made to ensure correctness and relevance; however, learning grows when 
readers engage, question, and explore further. 

May these notes serve as a strong academic foundation and contribute meaningfully 
to your preparation and future growth. 

Warm regards, 
Virendra Goura 
Author 
www.virendragoura.com 

DISCLAIMER 

This e-book has been created with utmost care, sincere effort, and extensive 
proofreading. However, despite all attempts to avoid mistakes, there may still be some 
errors, omissions, or inaccuracies that remain unnoticed. 
This e-book is issued with the understanding that neither the author nor the publisher 
shall be held responsible for any loss, damage, or misunderstanding arising from the 
use of the information contained within. 
All content provided is for educational and informational purposes only. 

© 2025 — All Rights Reserved. 

No part of this e-book may be reproduced, copied, scanned, stored in a retrieval 
system, or transmitted in any form—whether electronic, mechanical, digital, or 
otherwise—without prior written permission from the author/publisher. 

Any unauthorized use, sharing, or distribution of the material is strictly prohibited and 
may lead to civil or criminal liability under applicable copyright laws. 

http://www.virendragoura.com/


MCA-102 Object Oriented Programming with C++ 

Unit-1 
OOP Paradigm: 
Characteristics of OOP, Comparison between functional programming and OOP 
approach, characteristics of object oriented language - objects, classes, 
inheritance, reusability, user defined data types, polymorphism, overloading. 

Unit-2 
Introduction to C++: 
Identifier and keywords, constants, C++ operators, type conversion, Variable 
declaration, statements, expressions, input and output, conditional expression 
loop statements, break control statements, Classes, member functions, 
objects, arrays of class objects, pointers and classes, nested classes, 
constructors, destructors Inline member functions, static class member, friend 
functions, and dynamic memory allocation. 

Unit-3 
Polymorphism and Inheritance: 
Function overloading, operator overloading, polymorphism, early binding, 
polymorphism with pointers, virtual functions, late binding, pure virtual 
functions. 
Single inheritance, types of inheritance, types of base classes, types of 
derivations, multiple inheritances, container classes, member access control. 

Unit-4 
Exceptions and Templates: 
Exception Syntax, Multiple Exceptions, Function Templates, Function Templates 
with multiple argument templates. 

Unit-5 
File Handling in C++: 
C++ Streams, Console Stream Classes, Formatted And Unformatted Console  
I/O Operations, manipulators, File Streams, Classes File Modes, File Pointers 
and Manipulations File I/O. 



Unit-1 
OOP Paradigm: 
Characteristics of OOP, Comparison between functional programming and OOP approach, 
characteristics of object oriented language - objects, classes, inheritance, reusability, user 
defined data types, polymorphism, overloading. 

The Object-Oriented Programming (OOP) Paradigm is a programming approach where 
software is built using objects and classes instead of only functions. It focuses on organizing 
data and behavior together inside objects. 

Characteristics of OOP 

Object-Oriented Programming (OOP) provides several important characteristics that help in 
building structured and efficient programs. The major characteristics include Objects, 
Classes, Encapsulation, Abstraction, Inheritance, and Polymorphism. 

• Objects represent real-world entities and contain both data and behavior. 

• Classes act as templates or blueprints used to create objects. 

• Encapsulation ensures that data and methods are bundled together within an object, 
providing data protection and controlled access. 

• Abstraction hides unnecessary implementation details and shows only essential 
features to the user. 

• Inheritance allows one class to acquire the properties and behavior of another class, 
promoting code reuse. 

• Polymorphism enables the same function or method to behave differently based on 
the object or context. 

These characteristics make OOP flexible, modular, maintainable, secure, and highly suitable for 
designing complex and large-scale software systems. 

Comparison Between Functional Programming and OOP Approach 

Point Functional Programming OOP Approach

1. Core Concept
Based on mathematical 
functions and focuses on what 
to solve.

Based on real-world objects and 
focuses on how to solve.

2. Primary Building 
Block

Uses pure functions as the 
main program unit.

Uses objects and classes as the 
main program unit.

3. Data Handling Data is immutable and cannot 
be changed once created.

Data is mutable and can be 
modified during execution.

4. State 
Management

Avoids changing or storing 
program state.

State is stored and modified inside 
objects.



Overall, functional programming emphasizes functions, immutability, and mathematical 
logic, while OOP emphasizes objects, reusability, and real-world modeling. Both 
approaches have their benefits, and the choice depends on application requirements and 
development style. 

Characteristics of Object-Oriented Languages 

Object-oriented languages support several core characteristics that help structure programs 
using real-world modeling. These characteristics enhance modularity, reusability, security, 
scalability, and maintainability of software systems. The major characteristics include Objects, 
Classes, Inheritance, Reusability, User-Defined Data Types, Polymorphism, and 
Overloading. 

1. Objects 

An object is the basic unit of Object-Oriented Programming. It represents a real-world entity 
and contains both data (attributes) and behavior (methods). Each object has a defined 
identity, state, and behavior and interacts with other objects to perform operations. 

Code Example: 

class Car { 
public: 
    string brand; 
    void start() { 
        cout << "Car Started" << endl; 
    } 
}; 

int main() { 
    Car c; 

5. Approach Style
Follows a declarative style, 
focusing on logic rather than 
steps.

Follows an imperative style, where 
step-by-step instructions are 
written.

6. Function Behavior Uses pure functions that do 
not produce side effects.

Methods may produce side effects, 
such as modifying object data.

7. Reusability 
Method

Achieved through higher-order 
functions and recursion.

Achieved through inheritance, 
polymorphism, and 
encapsulation.

8. Iteration 
Technique

Mostly uses recursion instead 
of loops.

Uses loops and method calls for 
iteration.

9. Relationship 
Between Data and 
Behavior

Data and functions are 
separate.

Data and functions are combined 
inside objects.

10. Examples of 
Languages Haskell, Scala, Lisp, Erlang. Java, C++, Python, C#, Ruby.



    c.brand = "Audi"; 
    c.start(); 
} 

2. Classes 

A class is a blueprint, model, or template used to create objects. It defines data members and 
member functions without allocating memory until an object is instantiated. 

Code Example: 

class Student { 
public: 
    string name; 
    int roll; 
     
    void show() { 
        cout << "Name: " << name << ", Roll: " << roll << endl; 
    } 
}; 

3. Inheritance 

Inheritance allows one class (derived class) to access the properties and methods of another 
class (base class). It promotes hierarchical relationships and extends functionality without 
rewriting code. 

Types of Inheritance: 

Code Example (Single): 

class Animal { 
public: 
    void sound() { 
        cout << "Animal makes sound" << endl; 
    } 
}; 

class Dog : public Animal { 
public: 
    void bark() { 
        cout << "Dog barks" << endl; 
    } 
}; 

Type Description

Single Inheritance One derived class inherits from one base class.

Multiple Inheritance One derived class inherits from more than one base class.

Multilevel Inheritance A class is derived from another derived class.

Hierarchical Inheritance Multiple classes inherit from a single base class.

Hybrid Inheritance Combination of two or more inheritance types.



4. Reusability 

Reusability refers to the capability of using existing code components in new applications. It is 
primarily achieved through inheritance, class structures, function reuse, and libraries, 
reducing development time and redundancy. 

Code Example: 

class Shape { 
public: 
    void type() { cout << "This is a Shape" << endl; } 
}; 

class Circle : public Shape { }; 
class Square : public Shape { }; 

5. User-Defined Data Types 

Object-oriented languages allow developers to create customized data structures using classes. 
These user-defined data types behave similarly to primitive types and are used to represent 
complex entities. 

Code Example: 

class Employee { 
public: 
    string name; 
    float salary; 
}; 

Employee e1; // user-defined data type 

6. Polymorphism 

Polymorphism means "many forms." It allows the same method name or behavior to act 
differently depending on the situation. Polymorphism increases flexibility and dynamic behavior 
in software systems. 

Types of Polymorphism: 

Runtime Example: 

class Animal { 
public: 
    virtual void sound() { cout << "Animal sound" << endl; } 
}; 

class Cat : public Animal { 
public: 
    void sound() override { cout << "Meow" << endl; } 

Type Description

Compile-Time 
Polymorphism

Resolved during compilation (method and operator 
overloading).

Runtime Polymorphism Resolved at runtime using function overriding and dynamic 
binding.



}; 

7. Overloading 

Overloading is a form of compile-time polymorphism where a function or operator has the 
same name but different signatures (parameters). 

Sub-Types of Overloading: 

Function Overloading Example: 

class Math { 
public: 
    int add(int a, int b) { return a + b; } 
    double add(double a, double b) { return a + b; } 
}; 

Operator Overloading Example: 

class Number { 
public: 
    int value; 
    Number(int v) { value = v; } 

    Number operator+(Number obj) { 
        return Number(value + obj.value); 
    } 
}; 

Type Description

Function 
Overloading

Multiple functions with the same name but different 
parameters.

Operator 
Overloading

Redefining operators for custom behavior with user-defined 
types.



Unit-2 
Introduction to C++: 
Identifier and keywords, constants, C++ operators, type conversion, Variable declaration, 
statements, expressions, input and output, conditional expression loop statements, break 
control statements, Classes, member functions, objects, arrays of class objects, pointers and 
classes, nested classes, constructors, destructors Inline member functions, static class 
member, friend functions, and dynamic memory allocation. 

Introduction to C++ 

C++ is a high-level, general-purpose, object-oriented programming language developed by 
Bjarne Stroustrup in 1979 at AT&T Bell Labs. It was created as an extension of the C 
language and was originally called “C with Classes” before being officially named C++ in 
1983. 

C++ supports multiple programming paradigms, including procedural, object-oriented, and 
generic programming, making it a versatile language. It provides features such as classes, 
objects, inheritance, polymorphism, templates, and memory management using pointers. 

Due to its speed, flexibility, and system-level capabilities, C++ is widely used in applications 
like operating systems, game development, compilers, embedded systems, and high-
performance software. 

Identifier and keywords, constants 

1. Identifiers 

Identifiers are the names given to variables, functions, classes, arrays, objects, and 
other user-defined elements in a program. They help uniquely identify program 
components. Identifiers are created by the programmer. 

Rules for Identifiers: 

• Can contain letters, digits, and underscores 

• Must not begin with a digit 

• No special characters allowed (except _) 

• Case-sensitive (e.g., Age and age are different) 

• Cannot be the same as a C++ keyword 

Valid Identifier Examples: 

name, studentName, total_marks, _amount, num1 

Invalid Identifier Examples: 

1value, total-marks, class, roll#no 

2. Keywords 

Keywords are reserved words in C++ that have a predefined meaning and purpose in the 
language. They cannot be used as identifiers (variable or function names). 



Examples of C++ Keywords: 

int, float, char, class, return, public, private, if, else, while, for, void, new, delete 
Example Program: 

int age = 20; 
return 0; 
Here, int and return are keywords. 

3. Constants 

Constants are fixed values that do not change during program execution. They are used to 
store data that remains the same throughout the program. 

Types of Constants in C++: 

Declaring Constants Using const: 

const int MAX = 100; 
Declaring Constants Using #define: 

#define PI 3.14 

Example Program Showing All Three 

#include <iostream> 
using namespace std; 

#define PI 3.14 // Constant using macro 

int main() { 
    const int maxStudents = 50; // Constant using const keyword 
    int studentCount = 10; // Identifier 

    cout << "Max Students: " << maxStudents << endl; 
    cout << "Value of PI: " << PI << endl; 

    return 0; // 'return' and 'int' are keywords 
} 

Type Example

Integer Constant 10, -5, 1000

Floating Constant 3.14, -0.55

Character Constant 'A', '3', '#'

String Constant "Hello", "C++ Programming"

Boolean Constant true, false



C++ Operators 

Operators in C++ are special symbols used to perform operations on variables and values. 
They help in performing calculations, comparisons, logical decisions, memory operations, and 
many other tasks in a program. Operators work with operands and return a result. 

Example: 

int a = 10 + 5; 
Here, + is an operator and 10 and 5 are operands. 

Categories of Operators in C++ 

C++ operators are classified into the following major types: 

1. Arithmetic Operators 

Used for performing mathematical operations. 

Example: 

int a = 10, b = 3; 
cout << a + b; // Output: 13 
cout << a % b; // Output: 1 

2. Relational (Comparison) Operators 

Used to compare two values. The result is either true or false. 

Example:  int x = 5, y = 10; 

cout << (x < y); // Output: 1 (true) 

Operator Meaning Example

+ Addition a + b

- Subtraction a - b

* Multiplication a * b

/ Division a / b

% Modulus (remainder) a % b

Operator Meaning

 == Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to



3. Logical Operators 

Used to combine conditions. 

Example: 

int a = 5, b = 10; 
cout << (a < b && b > 0); // Output: true 

4. Assignment Operators 

Used to assign values to variables. 

Example: 

int a = 10; 
a += 5; // a = a + 5 → 15 

5. Increment and Decrement Operators 

Used to increase or decrease value by 1. 

Types: 

• Prefix: ++a 

• Postfix: a++ 

Operator Meaning Description

&& Logical AND Returns true only if both 
conditions are true

|| Logical OR Returns true if at least one 
condition is true

! Logical NOT
Reverses the logical value (true 
→ false, false → true)

Operator Meaning

= Assign

+= Add and assign

-= Subtract and assign

*= Multiply and assign

/= Divide and assign

%= Modulus and assign

Operator Meaning

++ Increment

-- Decrement



Example: 

int a = 5; 
cout << a++; // Output: 5 
cout << ++a; // Output: 7 

6. Bitwise Operators 

Used to perform bit-level operations. 

Example: 

int a = 5, b = 3; 
cout << (a & b); // Output: 1 

7. Ternary Operator 

Used as shorthand for if-else. 

Example: 

int a = 10; 
string result = (a > 5) ? "Yes" : "No"; 

Operator Name Description

& Bitwise AND Compares each bit of two numbers and returns 1 only if both bits 
are 1, otherwise 0.

| Bitwise OR Returns 1 if at least one bit is 1.

^ Bitwise XOR Returns 1 if corresponding bits are different; returns 0 if bits are 
the same.

~ Bitwise NOT Inverts all bits: 1 becomes 0, and 0 becomes 1.

<< Left Shift Shifts bits to the left; each shift multiplies the number by 2.

>> Right Shift Shifts bits to the right; each shift divides the number by 2.

Operator Syntax

?: condition ? expression1 : expression2



8. Miscellaneous Operators 

Example: 

int a = 10; 
cout << sizeof(a); // Output: 4 (depends on system) 

Example Program Using Multiple Operators 

#include <iostream> 
using namespace std; 

int main() { 
    int a = 10, b = 5; 
     
    cout << "Arithmetic: " << a + b << endl; 
    cout << "Comparison: " << (a > b) << endl; 
    cout << "Logical: " << (a > b && b > 0) << endl; 
     
    a += 5; 
    cout << "After Assignment: " << a << endl; 

    return 0; 
} 

Type Conversion in C++ 

Type conversion in C++ refers to converting one data type into another. It is required when 
values of different data types are assigned, used in expressions, or passed to functions. Type 
conversion helps avoid type mismatch errors and ensures that operations are performed 
correctly. 

Type conversion in C++ is categorized into two main types: 

1. Implicit Type Conversion (Automatic Conversion) 

2. Explicit Type Conversion (Type Casting) 

1. Implicit Type Conversion (Automatic Conversion) 

Implicit type conversion is automatically performed by the compiler when values of one data 
type are assigned to another compatible data type. This is also called type promotion. 

The conversion usually occurs in the following order (lower → higher precision): 

Operator Meaning Example

sizeof Returns size of variable or data type sizeof(int)

& Address of variable &a

* Pointer dereference *ptr

-> Member access via pointer ptr->value

. Member access obj.value



char → int → float → double 

Example: 

#include <iostream> 
using namespace std; 

int main() { 
    int x = 10; 
    double y = x; // int automatically converted to double 

    cout << "Value of y: " << y; // Output: 10.0 
    return 0; 
} 
In this example, the integer value 10 is automatically converted to 10.0 (double). 

2. Explicit Type Conversion (Type Casting) 

Explicit type conversion is performed manually by the programmer when the compiler does not 
automatically convert the value or when precise control of conversion is required. This is also 
known as type casting. 

Syntax: 

(type) variable; 
Example: 

#include <iostream> 
using namespace std; 

int main() { 
    double num = 10.75; 
    int value = (int)num; // manual type casting 

    cout << "Value after casting: " << value; // Output: 10 
    return 0; 
} 

Forms of Explicit Type Casting in C++ 

C++ supports multiple casting styles: 

Example Demonstrating All Cast Types: 

double num = 9.78; 

int a = (int)num;               // C-style cast 
int b = int(num);              // Function-style cast 
int c = static_cast<int>(num); // Modern C++ cast 

Type of Cast Example Description

C-Style Cast (int)x Traditional cast used in C

Function-Style Cast int(x) Uses constructor-style syntax

static_cast static_cast<int>(x) Safe cast used in OOP programming



Type Promotion in Expressions 

During arithmetic operations, smaller data types are promoted to larger types for accurate 
results. 

Example: 

char a = 5; 
int b = 10; 
float c = a + b; // char → int → float 

cout << c; // Output: 15.0 

Variable Declaration, Statements, Expressions, Input and Output in C++ 

1. Variable Declaration 

A variable declaration in C++ is the process of defining a variable with a specific data type and 
name so it can store a value during program execution. A variable must be declared before it is 
used. 

Syntax: data_type variable_name; 

Examples: 

int age; 
float salary; 
char grade; 

A variable declaration may also include initialization: 

int marks = 90; 

2. Statements 

A statement is a complete instruction that tells the compiler to perform a specific action. Each 
statement in C++ ends with a semicolon (;). Statements control the logic and execution flow 
of a program. 

Types of Statements: 

Example:  

int a = 5;  

Type of Statement Example

Assignment Statement x = 10;

Input/Output Statement cin >> x; cout << x;

Control Statement if (x > 0) {...}

Looping Statement for(int i=0; i<5; i++) {...}



a = a + 2; 

3. Expressions 

An expression in C++ is a combination of variables, constants, and operators that produce a 
value. Expressions are used in calculations, comparisons, and decision-making. 

Types of Expressions: 

Example: 

int x = 10, y = 5; 
int z = x + y * 2; // Expression evaluates to 20 

4. Input in C++ 

Input allows the user to enter values during program execution. In C++, input is performed 
using the cin object from the <iostream> library along with the extraction operator (>>). 

Example: 

#include <iostream> 
using namespace std; 

int main() { 
    int number; 
    cout << "Enter a number: "; 
    cin >> number; // input 
} 

5. Output in C++ 

Output is used to display information to the user. The cout object with the insertion operator 
(<<) is used for output operations. 

Example: 

cout << "The number is: " << number; 

Complete Program Example: 

#include <iostream> 
using namespace std; 

int main() { 

    int a, b;  // Variable declaration 

    cout << "Enter two numbers: "; // Output statement 

Type Description Example

Arithmetic Expression Performs mathematical operations x + y * 2

Relational Expression Compares values a > b

Logical Expression Combines relational expressions (a > b && b > 0)



    cin >> a >> b; // Input statement 

    int result = a + b; // Expression 

    cout << "Sum = " << result; // Output statement 

    return 0; // Statement 
} 

Summary Table 

Conditional Statements, Loop Statements, break Control Statement 

1. Conditional Statements 

Conditional statements in C++ are used to make decisions based on conditions. They allow 
program execution to follow different paths depending on whether a condition evaluates to 
true or false. 

Types of Conditional Statements: 

a) if Statement 

Executes a block only if the condition is true. 

if (age >= 18) { 
    cout << "Eligible to vote"; 
} 

b) if-else Statement 

Provides two paths: one when the condition is true and another when it is false. 

if (marks >= 40) { 
    cout << "Pass"; 
} else { 
    cout << "Fail"; 
} 

c) else-if Ladder 

Used to check multiple conditions sequentially. 

if (score >= 90) { 

Concept Description Example

Variable Declaration Defines a variable with type and name int x;

Statement Complete instruction ending with ; x = 5;

Expression Combination of values and operators a * b + 10

Input Accepts values from user cin >> x;

Output Displays result to user cout << x;



    cout << "Grade A"; 
} else if (score >= 75) { 
    cout << "Grade B"; 
} else { 
    cout << "Grade C"; 
} 

d) switch Statement 

Used when multiple values of a single expression need to be tested. 

int day = 3; 
switch(day) { 
    case 1: cout << "Monday"; break; 
    case 2: cout << "Tuesday"; break; 
    case 3: cout << "Wednesday"; break; 
    default: cout << "Invalid day"; 
} 

2. Loop Statements 

Loop statements allow repeated execution of a block of code as long as a specified condition 
remains true. 

Types of Looping Statements: 

a) for Loop 

Used when the number of iterations is known. 

for(int i = 1; i <= 5; i++) { 
    cout << i << " "; 
} 

b) while Loop 

Used when the number of iterations is unknown and depends on a condition. 

int i = 1; 
while(i <= 5) { 
    cout << i << " "; 
    i++; 
} 

c) do-while Loop 

Executes the block at least once, even if the condition is false. 

int i = 1; 
do { 
    cout << i << " "; 
    i++; 
} while(i <= 5); 



3. Break Control Statement 

The break statement is used to immediately exit from a loop or a switch statement, 
regardless of the loop condition. When encountered, control transfers to the first statement 
after the loop or switch block. 

Example in Loop: 

for(int i = 1; i <= 10; i++) { 
    if(i == 5) { 
        break; // loop terminates when i becomes 5 
    } 
    cout << i << " "; 
} 

Example in switch: 

int num = 2; 

switch(num) { 
    case 1: cout << "One"; break; 
    case 2: cout << "Two"; break; // break prevents fall-through 
    case 3: cout << "Three"; break; 
} 

Summary Table 

Classes 

A class in C++ is a user-defined data type that provides a template or blueprint for creating 
objects. It groups data members and member functions together into a single unit. The class 
defines the structure and behavior that the objects created from it will possess. Data members 
represent the attributes of a class, while member functions operate on those attributes. A class 
does not occupy memory until an object is instantiated from it. Classes support key OOP 
concepts such as abstraction, encapsulation, inheritance, and polymorphism, making them the 
foundation of object-oriented programming in C++. 

Example: 

class Student { 
public: 
    string name; 
    int roll; 
    void show() { 
        cout << "Name: " << name << ", Roll: " << roll; 
    } 
}; 

Concept Purpose Example

Conditional Statements Decision making based on conditions if, if-else, switch

Loop Statements Repeat execution for, while, do-while

break Statement Exit loop or switch immediately break;



Member Functions 

Member functions are functions declared inside a class and are responsible for defining the 
behavior of an object. They operate on the class data members and can access private, 
protected, or public data within the class. Member functions enforce encapsulation since they 
provide controlled access to the internal representation of the object. They may be defined 
inside the class (automatically inline) or outside using the scope resolution operator ::. 

Example: 

class Student { 
public: 
    string name; 
    void display() { 
        cout << "Student Name: " << name; 
    } 
}; 

Objects 

An object is an instance of a class and represents a real-world identifiable entity. When an 
object is created, memory is allocated for storing its data members. Objects interact with each 
other through member functions, and each object maintains its own separate identity and 
state, even when multiple objects are created from the same class. Objects allow programs to 
be modeled more naturally and logically. 

Example: 

Student s1; 
s1.name = "Rahul"; 
s1.display(); 

Arrays of Class Objects 

Arrays of class objects allow multiple instances of a class to be stored and accessed 
sequentially. This is useful when handling a collection of similar objects, such as multiple 
students, employees, or products. Each element in the array behaves like an independent 
object with its own state. 

Example: 

Student s[3]; 
s[0].name = "Amit"; 
s[1].name = "Sara"; 

Pointers and Classes 

Pointers can be used to store the address of an object and access its members using the arrow 
(->) operator. Using dynamic memory and pointers enables the creation of objects during 
runtime and supports advanced memory management. 

Example: 

Student *ptr = new Student(); 
ptr->name = "John"; 
ptr->display(); 



Nested Classes 

A nested class is a class defined within another class. It is useful for logically grouping classes 
and restricting access. The nested class can access private members of the outer class 
depending on access specifiers. 

Example: 

class Outer { 
public: 
    class Inner { 
    public: 
        void show() { 
            cout << "Inner class accessed"; 
        } 
    }; 
}; 

Constructors 

A constructor is a special member function automatically invoked when an object is created. It 
initializes object data and has the same name as the class with no return type. Constructors 
support overloading and can be default, parameterized, copy constructors, or dynamic 
constructors. 

Example: 

class Car { 
public: 
    string model; 
    Car(string m) { 
        model = m; 
    } 
}; 

Destructors 

A destructor is a special member function automatically executed when an object goes out of 
scope or is deleted. It begins with a tilde (~) and has no return type and no parameters. 
Destructors are used for cleanup tasks such as memory deallocation or closing files. 

Example: 

class Car { 
public: 
    ~Car() { 
        cout << "Destructor executed"; 
    } 
}; 

Inline Member Functions 

Inline member functions are expanded at compile time rather than invoked as a normal 
function call, reducing overhead. Inline is suitable for short functions. Functions defined inside 
a class are automatically treated as inline unless complexity prevents it. 

Example: 

inline void display() { 
    cout << "Inline function executed"; 



} 

Static Class Member 

A static data member belongs to the class rather than any individual object. All objects share a 
single copy of the static member. Static member functions can only access static data. 

Example: 

class Counter { 
public: 
    static int count; 
}; 
int Counter::count = 0; 

Friend Functions 

A friend function is a non-member function that is granted special access privileges to private 
and protected data of a class. It helps in operator overloading and two-class communication. 

Example: 

class Box { 
private: 
    int width; 
public: 
    Box(int w): width(w) {} 
    friend void show(Box b); 
}; 

Dynamic Memory Allocation 

Dynamic memory allocation in C++ allows the creation of objects and variables at runtime 
using new and deallocation using delete. It enables flexibility and efficient memory usage. 

Example: 

Student *ptr = new Student(); 
delete ptr; 



Unit-3 
Polymorphism and Inheritance: 
Function overloading, operator overloading, polymorphism, early binding, polymorphism with 
pointers, virtual functions, late binding, pure virtual functions. 
Single inheritance, types of inheritance, types of base classes, types of derivations, multiple 
inheritances, container classes, member access control. 
 

Polymorphism in C++ 

Polymorphism is one of the core features of Object-Oriented Programming that allows a 
function, operator, or object to behave in multiple forms depending on the context. The term 
polymorphism means “many forms.” In C++, polymorphism enables different implementations 
of functions or operations while keeping the same interface. It improves flexibility, scalability, 
and code reusability. Polymorphism is categorized into compile-time polymorphism and 
runtime polymorphism, based on when the function binding occurs. 

1. Function Overloading 

Function overloading is a form of compile-time polymorphism where multiple functions share 
the same name but differ in either number, type, or order of parameters. The appropriate 
function is resolved during compilation. 

Example: 

class Math { 
public: 
    int add(int a, int b) { return a + b; } 
    double add(double a, double b) { return a + b; } 
}; 

2. Operator Overloading 

Operator overloading allows built-in operators to work with user-defined objects. It improves 
code readability by redefining how operators behave when applied to objects of a class. 
Operator overloading also belongs to compile-time polymorphism. 

Example: 

class Number { 
public: 
    int value; 
    Number(int v) { value = v; } 

    Number operator+(Number obj) { 
        return Number(value + obj.value); 
    } 
}; 

3. Polymorphism (General Concept) 

Polymorphism allows a single interface or function name to represent multiple forms or 
implementations. It enables the same function call to behave differently based on context or 
data type. In C++, polymorphism is implemented in two ways: compile-time 
polymorphism, achieved through function and operator overloading, and runtime 
polymorphism, achieved through virtual functions. 



Example: 

class Shape { 
public: 
    void area(int side) { 
        cout << "Area of Square: " << side * side << endl; 
    } 

    void area(int length, int width) { 
        cout << "Area of Rectangle: " << length * width << endl; 
    } 
}; 

int main() { 
    Shape s; 
    s.area(5);         // Calls square version 
    s.area(4, 6);      // Calls rectangle version 
} 
In this example, the same function name area() performs different tasks depending on the 
parameters, demonstrating polymorphism. 

4. Early Binding 

Early binding, also known as static binding or compile-time binding, occurs when the 
function call is resolved at compile time. Features such as function overloading and operator 
overloading follow early binding because the compiler determines which version of the function 
or operator to execute based on the function signature. 

Example: 

class Display { 
public: 
    void show(int x) { 
        cout << "Integer: " << x << endl; 
    } 

    void show(string text) { 
        cout << "String: " << text << endl; 
    } 
}; 

int main() { 
    Display d; 
    d.show(10);           // Calls show(int) 
    d.show("Hello");      // Calls show(string) 
} 
Here, the compiler selects the correct version of show() during compilation, demonstrating 
early binding. 

5. Polymorphism Using Pointers 

C++ allows base class pointers to refer to derived class objects. This feature enables 
polymorphic behavior, especially when used with virtual functions. Without virtual functions, 
pointer calls follow the pointer type rather than the object type. 



Example: 

class Base { 
public: 
    void show() { cout << "Base"; } 
}; 

class Derived : public Base { 
public: 
    void show() { cout << "Derived"; } 
}; 

Base* ptr; 
Derived d; 
ptr = &d; 
ptr->show(); // Calls Base version (No virtual keyword → early binding) 

6. Virtual Functions 

A virtual function is a member function declared using the keyword virtual in the base class to 
enable dynamic function overriding in derived classes. When accessed through a base class 
pointer, the function of the actual object type executes—not the pointer type. This supports 
runtime polymorphism. 

Example: 

class Base { 
public: 
    virtual void show() { cout << "Base"; } 
}; 

class Derived : public Base { 
public: 
    void show() override { cout << "Derived"; } 
}; 

7. Late Binding 

Late binding, also known as runtime binding or dynamic binding, occurs when the function 
call is resolved at runtime rather than compile time. This mechanism works only when a 
function is declared as virtual in the base class. Late binding ensures that the overridden 
method in the derived class executes even if the call is made through a base class pointer. 

Example: 

class Base { 
public: 
    virtual void message() { 
        cout << "Message from Base class" << endl; 
    } 
}; 

class Derived : public Base { 
public: 
    void message() override { 
        cout << "Message from Derived class" << endl; 
    } 
}; 



int main() { 
    Base* ptr; 
    Derived d; 
    ptr = &d; 
    ptr->message();   // Executes derived class function (runtime decision) 
} 
In this example, the function call is resolved at runtime, enabling polymorphic behavior 
through late binding. 

8. Pure Virtual Functions 

A pure virtual function is declared in a base class but does not provide a definition. It is 
assigned = 0. Any class containing at least one pure virtual function becomes an abstract 
class and cannot be instantiated directly. Pure virtual functions enforce overriding in derived 
classes. 

Example: 

class Shape { 
public: 
    virtual void area() = 0; // Pure virtual function 
}; 

Inheritance in C++ 

Inheritance is a fundamental concept in object-oriented programming that allows one class 
(called the derived class) to inherit properties and behaviors (data members and member 
functions) from another class (called the base class). It helps in code reusability, reduces 
redundancy, supports hierarchical relationships, and allows modifications or extensions of 
existing code without rewriting it. 

1. Single Inheritance 

Single inheritance involves one base class and one derived class. It forms a simple one-to-one 
parent-child relationship. 

Example: 

class Animal { 
public: 
    void sound() { cout << "Animal sound"; } 
}; 

class Dog : public Animal { }; 

2. Types of Inheritance 

C++ supports several types of inheritance based on relationship structure: 

a) Single Inheritance 

(One base → one derived) 

class A { }; 
class B : public A { }; 



b) Multilevel Inheritance 

(Base → Derived → Another Derived) 

class A { }; 
class B : public A { }; 
class C : public B { }; 

c) Multiple Inheritance 

(A derived class has more than one base class) 

class A { }; 
class B { }; 
class C : public A, public B { }; 

d) Hierarchical Inheritance 

(One base → multiple derived classes) 

class A { }; 
class B : public A { }; 
class C : public A { }; 

e) Hybrid Inheritance 

(Combination of two or more inheritance types) 

class A { }; 
class B : public A { }; 
class C { }; 
class D : public B, public C { }; 

3. Types of Base Classes (Based on Access) 

Access specifiers define how base class members are inherited. 

a) Public Base Class 

Public remains public, protected remains protected. 

class Base { 
public: 
    int x; 
}; 

class Derived : public Base { }; 
b) Protected Base Class 

Public and protected become protected in derived class. 

class Base { 
public: 
    int x; 
}; 

class Derived : protected Base { }; 
c) Private Base Class 



Public and protected become private in derived class. 

class Base { 
public: 
    int x; 
}; 

class Derived : private Base { }; 

4. Types of Derivations 

Types of derivations refer to how a derived class inherits members of the base class using 
different access modes. The accessibility of inherited members in the derived class depends on 
whether the class is inherited as public, protected, or private. 

• Public derivation: Public members of the base class remain public in the derived 
class, and protected members remain protected. 

• Protected derivation: Public and protected members of the base class become 
protected in the derived class. 

• Private derivation: Public and protected members of the base class become private in 
the derived class. 

Example: 

#include <iostream> 
using namespace std; 

class A { 
public: 
    void display() { 
        cout << "Base Class A" << endl; 
    } 
}; 

// Public Derivation 
class B : public A { }; 

// Protected Derivation 
class C : protected A { }; 

// Private Derivation 
class D : private A { }; 

int main() { 
    B obj1; 
    obj1.display();  // Accessible (public inheritance) 

    // C obj2; 
    // obj2.display();  // ❌  Not accessible because display() becomes protected 

    // D obj3; 
    // obj3.display();  // ❌  Not accessible because display() becomes private 
} 



5. Multiple Inheritance 

Multiple inheritance occurs when a derived class inherits from more than one base class. It 
allows combining functionality from multiple sources. 

#include <iostream> 
using namespace std; 

class A { 
public: 
    void displayA() { cout << "From A\n"; } 
}; 

class B { 
public: 
    void displayB() { cout << "From B\n"; } 
}; 

class C : public A, public B { }; 

int main() { 
    C obj; 
    obj.displayA(); 
    obj.displayB(); 
} 

6. Container Classes 

A container class stores and manages objects of another class. Such classes act as storage 
structures like arrays, lists, or user-defined collections. 

Example: 

class Student { 
public: 
    string name; 
}; 

class Classroom { 
private: 
    Student list[30]; // container storing objects 
}; 

7. Member Access Control 

Member access control determines which class members are visible and accessible in derived 
classes. C++ uses three access levels: 

• Public: Accessible everywhere 

• Protected: Accessible in base and derived class 

• Private: Accessible only within the class 

Example: 

class Base { 
protected: 
    int value; 



}; 

class Derived : public Base { 
public: 
    void show() { 
        cout << value; // allowed because value is protected 
    } 
}; 



Unit-4 
Exceptions and Templates: 
Exception Syntax, Multiple Exceptions, Function Templates, Function Templates with multiple 
argument templates. 

Exceptions and Templates in C++ 

C++ provides two powerful programming features: Exception Handling and Templates. 
Exception handling enables safe run-time error management without abrupt program 
termination, while templates allow writing generic and reusable code that works with different 
data types. Both concepts improve program reliability, flexibility, and maintainability. 

Exception Handling in C++ 

Exception handling is used to handle abnormal runtime conditions or errors in a controlled 
manner. Without exception handling, runtime errors such as division by zero, invalid memory 
access, or file-handling failures may terminate a program unexpectedly. 

Exception handling uses three keywords: 

• try → Represents code that may throw an exception 

• throw → Used to raise an exception 

• catch → Handles the thrown exception 

Example using all three keywords: 

#include <iostream> 
using namespace std; 

int main() { 
    int a, b; 
     
    cout << "Enter two numbers: "; 
    cin >> a >> b; 

    try { 
        if(b == 0) { 
            throw "Error: Division by zero!"; 
        } 
        cout << "Result: " << a / b << endl; 
    } 
    catch(const char* message) { 
        cout << message << endl; 
    } 

    cout << "Program continues..." << endl; 

    return 0; 
} 

Explanation: 

• The try block contains the division operation that may cause an error. 



• When the second number (b) is zero, the program executes a throw statement, 
sending an exception message. 

• The thrown message is received and handled inside the catch block, preventing 
program termination. 

1. Exception Syntax 

The basic syntax of exception handling involves writing code that may fail inside a try block, 
and handling errors using one or more catch blocks. A throw statement transfers control to the 
appropriate handler. 

Example: 

#include <iostream> 
using namespace std; 

int main() { 
    try { 
        int x = 0; 
        if(x == 0) 
            throw "Cannot divide by zero!"; 
        cout << 10 / x; 
    } 
    catch(const char* err) { 
        cout << "Exception: " << err << endl; 
    } 
} 

2. Multiple Exceptions 

A single try block may generate different types of exceptions. C++ allows multiple catch 
blocks, each designed to handle a specific type of exception. The first matching handler 
executes. 

Example: 

#include <iostream> 
using namespace std; 

int main() { 
    try { 
        int input = 2; 

        if(input == 1) 
            throw 100;         // integer exception 
        else if(input == 2) 
            throw 5.5;         // double exception 
        else 
            throw string("Unknown Error"); 
    } 
    catch(int e) { 
        cout << "Integer Exception: " << e << endl; 
    } 
    catch(double e) { 
        cout << "Double Exception: " << e << endl; 
    } 
    catch(string s) { 
        cout << "String Exception: " << s << endl; 



    } 
} 

3. Catch-All Handler 

C++ also provides a generic catch block that catches any exception using catch(...). 

catch(...) { 
    cout << "Unhandled exception occurred."; 
} 

Templates in C++ 

Templates enable generic programming, allowing functions and classes to operate with 
different data types without rewriting code. Templates are defined using the template keyword. 

There are two major types: 

• Function Templates 

• Class Templates (not requested but optional concept context) 

Templates promote code reusability, reduce duplication, and support type flexibility. 

4. Function Templates 

A function template is a template for creating multiple function versions using different data 
types. The compiler generates the required function during compilation, depending on the 
argument type used. 

Syntax: 

template <typename T> 
return_type function_name(T parameter) { … } 
Example: 

#include <iostream> 
using namespace std; 

template <class T> 
T maximum(T a, T b) { 
    return (a > b) ? a : b; 
} 

int main() { 
    cout << maximum(10, 20) << endl;     // int 
    cout << maximum(3.5, 2.1) << endl;   // double 
} 

5. Function Templates with Multiple Argument Templates 

Function templates in C++ can accept more than one type parameter. This allows the same 
function to work with arguments of different data types without creating separate versions. By 
defining multiple template parameters, the function becomes more flexible and capable of 
handling different data type combinations. 



Example: 

#include <iostream> 
using namespace std; 

template <typename T1, typename T2> 
void display(T1 a, T2 b) { 
    cout << "Value 1: " << a << ", Value 2: " << b << endl; 
} 

int main() { 
    display(5, 3.14);         // Uses int and double 
    display("Hello", 100);    // Uses string and int 
} 

6. Template Specialization (Related Concept) 

When a template requires different behavior for a specific data type, C++ allows specialization. 

Example: 

template <> 
string maximum<string>(string a, string b) { 
    return (a.length() > b.length()) ? a : b; 
} 



Unit-5 
File Handling in C++: 
C++ Streams, Console Stream Classes, Formatted And Unformatted Console I/O Operations, 
manipulators, File Streams, Classes File Modes, File Pointers and Manipulations File I/O. 

File Handling in C++ 

File handling in C++ allows a program to store data permanently on storage devices rather 
than keeping it only in memory. This makes the program more useful because the stored data 
can be reused later. File handling supports operations such as creating files, writing data, 
reading data, updating records, and deleting records. C++ provides this functionality through 
the <fstream> library. 

1. C++ Streams 

A stream in C++ is a flow of data between a program and an input/output device. When the 
program reads input, data flows from the device into the program (input stream). When 
printing output, data flows from the program to the device (output stream). 

C++ treats files and console input/output the same way using streams, making operations 
consistent and easy to use. 

Example: 

#include <iostream> 
using namespace std; 

int main() { 
    int num; 
    cout << "Enter number: ";   // Output stream 
    cin >> num;                 // Input stream 
    cout << "You entered: " << num; 
} 

2. Console Stream Classes 

C++ provides built-in classes to handle console input/output through streams. These classes 
are available in the <iostream> header. 

These classes overload operators (>> and <<) to simplify input/output. 

Example: 

cout << "Hello";   // uses ostream 
cin >> num;        // uses istream 

Class Purpose Associated Object

istream Handles input operations cin

ostream Handles output operations cout

iostream Handles both input and output Used in advanced cases



3. Formatted Console I/O Operations 

Formatted I/O allows controlling the appearance of output. Using manipulators (like setw, 
fixed, setprecision, etc.) we can control alignment, width, decimal formatting, and spacing of 
displayed values. 

Formatted I/O improves output readability and presentation. 

Example: 

#include <iomanip> 
cout << setw(10) << setprecision(2) << fixed << 45.6789; 
Output: 

     45.68 

4. Unformatted Console I/O Operations 

Unformatted I/O handles raw character input/output and does not apply formatting. It is faster 
and is used when raw character processing is required (like reading a file word-by-word or 
character-by-character). 

Common unformatted functions: 

• get() → reads a single character 

• put() → prints a single character 

• getline() → reads full string including spaces 

Example: 

char ch; 
cin.get(ch); 
cout.put(ch); 

5. Manipulators 

Manipulators are special functions used with streams to modify how data is displayed or read. 
They help format output without changing variable values. 

Two types exist: 

• Without arguments → endl, hex, oct, dec 

• With arguments → setw(n), setprecision(n), setfill(n) 

Example: 

cout << hex << 255;     // output: ff (hex form) 

6. File Streams 

C++ uses three classes from <fstream> to work with files: 



These streams work similarly to console streams but interact with files. 

Example: Writing and Reading 

#include <fstream> 
using namespace std; 

int main() { 
    ofstream out("test.txt"); 
    out << "Hello File!"; 
    out.close(); 
} 

7. File Modes 

File modes define how a file should be opened. Multiple modes can be combined using |. 

Example: 

fstream file; 
file.open("data.txt", ios::out | ios::app); 
file << "New line added."; 
file.close(); 

8. File Pointers and Manipulation 

File pointers are used to track the current position in the file for reading or writing. There are 
two pointers: 

• get pointer → used to read from file (seekg(), tellg()) 

• put pointer → used to write to file (seekp(), tellp()) 

These allow random access — meaning we can jump to any position inside file. 

Class Purpose

ifstream Read data from file

ofstream Write data into file

fstream Read and write both

Mode Meaning

ios::in Open file for reading

ios::out Open file for writing

ios::app Append new contents to end

ios::trunc Delete old content

ios::binary Open file in binary format



Example: 

fstream file("data.txt"); 
file.seekg(0);                       // Move read pointer to start 
cout << file.tellg();                // Show pointer position 

9. File I/O (Read and Write Operations) 

File Input/Output (I/O) refers to writing data to a file and reading it back. 

Writing Example: 

ofstream file("info.txt"); 
file << "This is a test file."; 
file.close(); 
Reading Example: 

ifstream file("info.txt"); 
string text; 
while(getline(file, text)) { 
    cout << text << endl; 
} 
file.close(); 

Binary File Example (Advanced but important) 

struct Student { 
    char name[20]; 
    int age; 
}; 

Student s = {"John", 20}; 

ofstream fout("student.dat", ios::binary); 
fout.write((char*)&s, sizeof(s)); 
fout.close(); 



1. C++ Streams (cin, cout) 

#include <iostream> 
using namespace std; 

int main() { 
    int age; 

    cout << "Enter your age: ";   // Output stream (cout) 
    cin >> age;                   // Input stream (cin) 

    cout << "You entered: " << age << endl; 

    return 0; 
} 

2. Console Stream Classes (istream, ostream) 

You usually don’t use istream and ostream directly; instead you use their objects: cin and 
cout. 

#include <iostream> 
using namespace std; 

int main() { 
    int x; 
    cout << "Enter a number: ";   // ostream object 
    cin >> x;                     // istream object 

    cout << "Number is: " << x << endl; 

    return 0; 
} 

3. Formatted Console I/O Operations 

Using <iomanip> manipulators like setw, setprecision, fixed. 

#include <iostream> 
#include <iomanip>      // for setw, setprecision, fixed 
using namespace std; 

int main() { 
    double price = 123.456789; 

    cout << "Default: " << price << endl; 

    cout << "Fixed, 2 decimals: "  
         << fixed << setprecision(2) << price << endl; 

    cout << "Width 10: " << setw(10) << price << endl; 

    return 0; 
} 



4. Unformatted Console I/O Operations (get, getline, put) 

#include <iostream> 
using namespace std; 

int main() { 
    char ch; 
    char name[50]; 

    cout << "Enter a single character: "; 
    cin.get(ch);              // reads one character 
    cout << "You entered: "; 
    cout.put(ch);             // prints one character 
    cout << endl; 

    cin.ignore();             // clear leftover newline 

    cout << "Enter your full name: "; 
    cin.getline(name, 50);    // reads a full line including spaces 

    cout << "Your name is: " << name << endl; 

    return 0; 
} 

5. Manipulators (endl, hex, dec, oct, setw, setprecision) 

#include <iostream> 
#include <iomanip> 
using namespace std; 

int main() { 
    int num = 255; 
    double val = 12.34567; 

    // Number system manipulators 
    cout << "Decimal: " << dec << num << endl; 
    cout << "Hex: "     << hex << num << endl; 
    cout << "Octal: "   << oct << num << endl; 

    // Formatting floating number 
    cout << fixed << setprecision(2); 
    cout << "Fixed with 2 decimals: " << val << endl; 

    // Width using setw 
    cout << "Right aligned in 10 spaces: "  
         << setw(10) << val << endl; 

    cout << "End of program." << endl;  // endl = newline + flush 

    return 0; 
} 



6. File Streams (ifstream, ofstream, fstream) 

(a) Write to a file using ofstream 

#include <iostream> 
#include <fstream> 
using namespace std; 

int main() { 
    ofstream outFile("example.txt");   // open file for writing 

    if (!outFile) { 
        cout << "File could not be opened!" << endl; 
        return 1; 
    } 

    outFile << "Hello from C++ file handling!" << endl; 
    outFile << "This is a second line." << endl; 

    outFile.close();   // close the file 

    cout << "Data written to example.txt" << endl; 
    return 0; 
} 

(b) Read from a file using ifstream 

#include <iostream> 
#include <fstream> 
#include <string> 
using namespace std; 

int main() { 
    ifstream inFile("example.txt");   // open file for reading 

    if (!inFile) { 
        cout << "File not found!" << endl; 
        return 1; 
    } 

    string line; 
    while (getline(inFile, line)) {   // read line by line 
        cout << line << endl; 
    } 

    inFile.close(); 
    return 0; 
} 

(c) Read & Write using fstream 

#include <iostream> 
#include <fstream> 
using namespace std; 

int main() { 
    fstream file("data.txt", ios::in | ios::out | ios::trunc); 

    if (!file) { 



        cout << "File error!" << endl; 
        return 1; 
    } 

    file << "First line" << endl; 
    file << "Second line" << endl; 

    file.seekg(0);   // move read pointer to beginning 

    string line; 
    while (getline(file, line)) { 
        cout << line << endl; 
    } 

    file.close(); 
    return 0; 
} 

7. File Modes (ios::in, ios::out, ios::app, ios::binary, ios::trunc) 

#include <iostream> 
#include <fstream> 
using namespace std; 

int main() { 
    // Open in append mode (add at end) 
    ofstream appFile("log.txt", ios::app); 
    appFile << "New log entry." << endl; 
    appFile.close(); 

    // Open in write mode with truncation (old data removed) 
    ofstream writeFile("log.txt", ios::out | ios::trunc); 
    writeFile << "File overwritten." << endl; 
    writeFile.close(); 

    // Open in binary mode 
    ofstream binFile("data.bin", ios::binary); 
    int x = 100; 
    binFile.write((char*)&x, sizeof(x)); 
    binFile.close(); 

    cout << "File modes demo completed." << endl; 
    return 0; 
} 

8. File Pointers and Manipulations (seekg, seekp, tellg, tellp) 

#include <iostream> 
#include <fstream> 
using namespace std; 

int main() { 
    ofstream out("sample.txt"); 
    out << "Hello file pointer!"; 
    out.close(); 

    fstream file("sample.txt", ios::in | ios::out); 

    if (!file) { 
        cout << "File error!" << endl; 



        return 1; 
    } 

    // Show current get pointer position 
    cout << "Initial get position: " << file.tellg() << endl; 

    // Move get pointer to 6th character 
    file.seekg(6); 
    cout << "New get position: " << file.tellg() << endl; 

    char ch; 
    file.get(ch);   // read one char at current position 
    cout << "Character at position 6: " << ch << endl; 

    // Move put pointer to end and write text 
    file.seekp(0, ios::end); 
    file << " [Appended]"; 

    file.close(); 
    return 0; 
} 

9. File I/O – Full Simple Example (Write + Read) 

#include <iostream> 
#include <fstream> 
#include <string> 
using namespace std; 

int main() { 
    // Writing to file 
    ofstream out("students.txt"); 
    if (!out) { 
        cout << "Cannot open file for writing." << endl; 
        return 1; 
    } 

    out << "Alice 20" << endl; 
    out << "Bob 21" << endl; 
    out.close(); 

    // Reading from file 
    ifstream in("students.txt"); 
    if (!in) { 
        cout << "Cannot open file for reading." << endl; 
        return 1; 
    } 

    string name; 
    int age; 

    cout << "Student Records:" << endl; 
    while (in >> name >> age) {  // read name and age 
        cout << "Name: " << name << ", Age: " << age << endl; 
    } 

    in.close(); 
    return 0; 
} 


