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UNIT 1– Basic Building Blocks & Arithmetic/Logic Unit 

Basic Building Blocks: Gates, Boolean Functions and Expressions Designing Gate Networks, 
K-map simplification, Useful Combinational Parts, Programmable Combinational Parts, Timing 
and Control, Latches, Flip-flops, Registers and Counters, Sequential Circuits. 

Arithmetic/Logic Unit: Numbers Representation, Arithmetic Operations, Floating-Point 
Arithmetic. 

PART A – BASIC BUILDING BLOCKS 

1. Introduction 

Every computer system is built using digital electronic circuits that process data in the form 
of binary signals (0s and 1s). 
These digital systems perform logical and arithmetic operations using logic gates, 
combinational circuits, and sequential circuits. 

The goal of this unit is to understand how these fundamental building blocks work together to 
design and control a computer’s internal architecture. 

2. Logic Gates 

Logic gates are the most basic components of digital circuits. 
They perform logical decisions based on binary inputs. 
Each gate implements a Boolean function, which defines how output depends on inputs. 

Binary System: 

Binary has two logic levels: 

• Logic 0 → represents LOW voltage 

• Logic 1 → represents HIGH voltage 

2.1 Types of Logic Gates 

a) AND Gate 

• Operation: Logical Multiplication 

• Symbol: · 

• Expression: Y = A · B 

• Truth Table: 

A B Output Y

0 0 0

0 1 0

1 0 0



Explanation: 
The output is high (1) only when both inputs are 1. 

b) OR Gate 

• Operation: Logical Addition 

• Expression: Y = A + B 

• Truth Table: 

Explanation: 
The output becomes 1 if any input is 1. 

c) NOT Gate (Inverter) 

• Operation: Logical Complement 

• Expression: Y = Ā 

• Truth Table: 

Explanation: 
It inverts the input; if input is 1, output becomes 0. 

d) NAND Gate 

• Operation: NOT of AND 

• Expression: Y = (A · B)’ 

• Truth Table: 

1 1 1

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

A Y

0 1

1 0

A B Y

0 0 1

0 1 1

1 0 1



Explanation: 
Output is 1 except when both inputs are 1. 

e) NOR Gate 

• Operation: NOT of OR 

• Expression: Y = (A + B)’ 

f) XOR Gate (Exclusive OR) 

• Expression: Y = A ⊕ B = A’B + AB’ 

• Truth Table: 

Explanation: 
Output is 1 only if inputs are different. 

g) XNOR Gate (Exclusive NOR) 

• Expression: Y = (A ⊕ B)’ = AB + A’B’ 

• Truth Table: 

Explanation: 
Output is 1 when both inputs are same. 

1 1 0

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

A B Y

0 0 1

0 1 0

1 0 0

1 1 1



2.2 Universal Gates 

• NAND and NOR are called universal gates because any logic function can be 
constructed using only these gates. 

3. Boolean Functions and Expressions 

A Boolean function defines the logical relationship between binary input variables and the 
resulting output. 
It uses Boolean algebraic operations (AND, OR, NOT). 

Example: 
F(A, B, C) = A’B + AC’ is a Boolean function. 

A Boolean expression is a mathematical expression formed using binary variables, logical 
operators, and constants (0 and 1) to represent the behavior of a digital logic circuit. 

3.1 Boolean Laws and Rules 

1. Commutative Laws 

◦ A + B = B + A 

◦ A · B = B · A 

2. Associative Laws 

◦ (A + B) + C = A + (B + C) 

◦ (A · B) · C = A · (B · C) 

3. Distributive Law 

◦ A · (B + C) = (A · B) + (A · C) 

4. Complement Laws 

◦ A + A’ = 1 

◦ A · A’ = 0 

5. Identity Laws 

◦ A + 0 = A 

◦ A · 1 = A 

3.2 Canonical Forms 

(a) Sum of Products (SOP) – Expression written as sum (OR) of product terms (ANDs). 
Example: F = A’B + AB’ 

(b) Product of Sums (POS) – Expression written as product (AND) of sum terms (ORs). 
Example: F = (A + B)(A’ + B’) 



4. Designing Gate Networks 

Designing digital circuits involves: 

1. Writing the Boolean function. 

2. Simplifying it using Boolean laws or K-map. 

3. Drawing circuit using gates. 

Example: 
F = A’B + AB’ → This is an XOR function. 
Circuit: Uses two AND gates, two NOT gates, and one OR gate. 

5. K-Map Simplification 

A Karnaugh Map (K-map) is a graphical technique used to simplify Boolean functions 
in a systematic and visual manner. It reduces complex Boolean expressions into minimal 
form without lengthy algebraic manipulation. 
K-map simplification helps in designing efficient digital circuits with minimum number of 
logic gates. 

Purpose of K-Map 

• Minimizes Boolean expressions 

• Reduces number of logic gates 

• Simplifies circuit design 

• Decreases hardware cost and power consumption 

Types of K-Maps 

Steps for K-Map Simplification 

Step 1: Draw the K-Map 

Draw the K-map according to the number of variables (2, 3, or 4). 

Step 2: Mark Minterms 

Fill 1s in the cells corresponding to the given minterms. 
All other cells contain 0. 

Number of Variables K-Map Size

2 variables 2 × 2

3 variables 2 × 4

4 variables 4 × 4



Step 3: Group Adjacent 1s 

• Group adjacent 1s in powers of 2 (1, 2, 4, 8…) 

• Groups must be rectangular 

• Overlapping is allowed 

• Wrapping around edges is allowed 

• Larger groups give simpler expressions 

Step 4: Write the Simplified Expression 

For each group: 

• Identify variables that remain constant 

• Eliminate changing variables 

• Combine all group expressions using OR 

Example 

Given Boolean Function 

F(A,B,C)=Σ(1,3,5,7) 

Step 1: Draw 3-Variable K-Map 

(Variables: A for rows, BC for columns) 

         BC 
         00  01  11  10 
A=0    0   1   1   0 
A=1    0   1   1   0 

Step 2: Mark Minterms 

• Minterm 1 → (A=0, B=0, C=1) 

• Minterm 3 → (A=0, B=1, C=1) 

• Minterm 5 → (A=1, B=0, C=1) 

• Minterm 7 → (A=1, B=1, C=1) 

All these minterms correspond to C = 1. 

Step 3: Group the 1s 

All four 1s form one group of 4: 

          BC 
          00  01  11  10 
A=0    0  [1]  [1]  0 
A=1    0  [1]  [1]  0 



Step 4: Write the Simplified Expression 

• Variable C remains constant (C = 1) 

• Variables A and B change, so they are eliminated 

Simplified Boolean Function 

  F = C 

Verification Using Truth Table 

Advantages of K-Map Simplification 

• Simple and visual method 

• Eliminates algebraic complexity 

• Produces minimal expressions 

• Useful for up to 4 variables 

Limitations of K-Map 

• Becomes complex for more than 4 variables 

• Not suitable for automation 

• Manual errors possible for large maps 

6. Useful Combinational Circuits 

Useful combinational circuits are digital circuits in which the output depends only on the 
present input values. These circuits do not contain memory, do not require clock 
signals, and are designed using logic gates. They are mainly used for arithmetic 
operations, data selection, encoding, and decoding in digital systems. 

A B C F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1



6.1 Half Adder 

A Half Adder is a combinational circuit that adds two 1-bit binary numbers and produces two 
outputs: 

• Sum (S) 

• Carry (C) 

It is called a half adder because it does not handle carry from a previous stage. 

Inputs and Outputs 

• Inputs: A, B 

• Outputs: Sum (S), Carry (C) 

Boolean Expressions 

S = A⊕B 
C = A⋅B 

Truth Table 

Logic Diagram  

Limitation 

Half adder cannot be used alone for multi-bit addition because it does not accept carry-in. 

Applications 

Basic arithmetic circuits, Used in the construction of full adders 

6.2 Full Adder 

A Full Adder is a combinational circuit that adds three 1-bit binary inputs: 

• A 

• B 

A B Sum (S) Carry (C)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1



• Carry-in (Cin) 

It produces: 

• Sum (S) 

• Carry-out (Cout) 

Inputs and Outputs 

• Inputs: A, B, Cin 

• Outputs: Sum (S), Carry (Cout) 

Boolean Expressions 

Truth Table 

Logic Diagram (Using Two Half Adders) 

       

Applications 

Binary addition, ALU (Arithmetic Logic Unit), Processors and digital computers 

6.3 Subtractor 

A Subtractor is a combinational circuit that performs binary subtraction. 

Half Subtractor 

A Half Subtractor subtracts one 1-bit binary number from another and produces: 

A B Cin Sum Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1



• Difference (D) 

• Borrow (B) 

Inputs and Outputs 

• Inputs: A (minuend), B (subtrahend) 

• Outputs: Difference, Borrow 

Boolean Expressions 

Truth Table 

 
Logic Diagram 

6.4 Multiplexer (MUX) 

A Multiplexer (MUX) is a combinational circuit that selects one of many input lines and 
sends it to a single output line based on select inputs. 
It is also called a data selector. 

4-to-1 Multiplexer 

• Inputs: A0, A1, A2, A3 

• Select lines: S1, S0 

• Output: Y 

Boolean Expression 

A B Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0



Truth Table 

Block Diagram 

Applications 

Data routing, CPU instruction selection, Signal switching 

6.5 Demultiplexer (DEMUX) 

A Demultiplexer (DEMUX) is a combinational circuit that takes a single input and 
distributes it to one of many output lines based on select inputs. 
It is also known as a data distributor. 

1-to-4 DEMUX 

 
Diagram 

     

Applications 

Data distribution, Memory selection, Serial-to-parallel conversion 

S1 S0 Output

0 0 A0

0 1 A1

1 0 A2

1 1 A3

S1 S0 Active Output

0 0 Y0

0 1 Y1

1 0 Y2

1 1 Y3



6.6 Encoder and Decoder 

Encoder 

An Encoder is a combinational circuit that converts an active input line into a binary 
coded output. 

Example: 4-to-2 Encoder 

Applications 

Keyboard encoding, Interrupt systems, Data compression 

Decoder 

A Decoder is a combinational circuit that converts binary input into one active output 
line. 

Example: 2-to-4 Decoder 

Applications 

Memory address decoding, Instruction decoding, Chip selection 

7. Programmable Combinational Circuits 

Programmable Combinational Circuits are digital circuits whose logic function can be 
programmed by the user rather than being fixed at design time. They implement 
combinational logic only (no memory elements like flip-flops). 

Key Idea 

Instead of building a circuit with fixed gates, programmable combinational circuits use arrays 
of logic elements (AND/OR/NOT) that can be configured to realize different Boolean functions. 

Input Active Output

D0 0

D1 1

D2 10

D3 11

A B Y0 Y1 Y2 Y3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1



Main Types 

1. ROM (Read Only Memory) 

• Uses a fixed AND array (decoder) and a programmable OR array 

• Inputs act as address lines; outputs store logic values 

• Can implement any combinational function 

• Disadvantage: inefficient for large input sizes 

2. PLA (Programmable Logic Array) 

• Programmable AND array 

• Programmable OR array 

• Most flexible 

• Can minimize hardware by sharing product terms 

• Disadvantage: more complex and slower than PAL 

3. PAL (Programmable Array Logic) 

• Programmable AND array 

• Fixed OR array 

• Faster and cheaper than PLA 

• Less flexible than PLA 

4. GAL (Generic Array Logic) 

• Improved version of PAL 

• Reprogrammable (EEPROM based) 

• Widely used in modern designs 

Comparison Table 

Advantages 

• Easy to modify logic 

Device AND Array OR Array Flexibility Speed

ROM Fixed Programmable Low Medium

PLA Programmable Programmable High Low

PAL Programmable Fixed Medium High

GAL Programmable Fixed Medium High



• Reduced design time 

• Suitable for prototyping 

• Fewer ICs required 

Disadvantages 

• Limited complexity 

• Not suitable for sequential logic 

• Higher cost than simple gates for small circuits 

Applications 

• Address decoding 

• Code converters 

• Arithmetic logic functions 

• Control logic 

8. Timing and Control 

Timing and Control circuits coordinate the sequence of operations in a digital system by 
generating control signals at the correct time. They ensure that data flows correctly between 
system components such as registers, ALUs, and memory. 

Timing 

Timing defines when an operation occurs. 

Key Elements 

• Clock Signal 

◦ A periodic waveform (usually square wave) 

◦ Synchronizes all system operations 

• Clock Period (T): Time for one complete cycle 

• Clock Frequency (f): ( f = \frac{1}{T} ) 

Types of Timing 

1. Synchronous Timing 

◦ All operations triggered by a common clock 

◦ Predictable and reliable 

2. Asynchronous Timing 

◦ No global clock 



◦ Operations triggered by events 

◦ Faster but more complex 

Control 

Control determines what operation is performed. 

Control Signals 

• Enable / Disable 

• Load / Clear 

• Read / Write 

• Select signals 

Control Unit 

• Generates control signals based on: 

◦ Current instruction 

◦ Timing signals 

◦ Status flags 

Timing and Control Unit 

Combines timing and control functions. 

Functions 

• Generates clock pulses 

• Produces control signals 

• Sequences micro-operations 

• Ensures proper data transfer 

Micro-Operations 

Basic operations performed on data: 

• Register transfer 

• Arithmetic operations 

• Logical operations 

• Shift operations 



Example: 

T1: MAR ← PC 
T2: MDR ← Memory[MAR] 
T3: IR ← MDR 

Applications 

• CPUs 

• Microcontrollers 

• Digital communication systems 

• Control systems 

Advantages 

• Proper synchronization 

• Prevents data corruption 

• Improves system reliability 

9. Latches 

A latch is a basic memory element that stores one bit of information. 
It is level-triggered. 

Key Characteristics 

• Stores 1 bit 

• Level-triggered (not edge-triggered) 

• Output changes as long as enable is active 

• Basic memory element 

Types of Latches 

1. SR (Set–Reset) Latch 

Built using NOR or NAND gates. 

NOR-based SR Latch 



⚠  Invalid state causes unpredictable output. 

2. Gated SR Latch 

• Uses an Enable (E) signal 

• Latch responds only when E = 1 

• Prevents accidental state change 

3. D (Data) Latch 
• Eliminates invalid state 

• Inputs: D (data) and Enable 

• When Enable = 1, output follows D 

• When Enable = 0, output holds

S R Q (Next State) Operation

0 0 Q (no change) Hold

1 0 1 Set

0 1 0 Reset

1 1 Invalid Forbidden



4. JK Latch 

• Improved SR latch 

• No invalid state 

• When J = K = 1, output toggles 

Latch vs Flip-Flop 

Advantages 

• Simple design 

• Fast response 

• Low power consumption 

Disadvantages 

• Glitches possible 

• Not suitable for synchronous systems 

• Timing issues 

Applications 

• Temporary data storage, Control circuits, Asynchronous systems ,Debouncing switches 

Enable D Q

0 X Hold

1 0 0

1 1 1

J K Q (Next)

0 0 Hold

0 1 Reset

1 0 Set

1 1 Toggle

Feature Latch Flip-Flop

Triggering Level Edge

Control Enable Clock

Speed Faster Slower

Stability Less More



10. Flip-Flops 

A flip-flop is a clock-controlled, bistable sequential logic circuit capable of storing one 
bit of binary information (0 or 1). 
It changes its output only at a specific moment of the clock signal (edge-triggered) and 
retains its state until the next clock pulse. 

Flip-flops are the basic memory elements used in registers, counters, memory units, 
and control circuits. 

Characteristics of Flip-Flops 

Difference Between Latch and Flip-Flop 

Types of Flip-Flops 

1. SR (Set-Reset) Flip-Flop 

SR flip-flop has two inputs: 

• S (Set) 

• R (Reset) 

It is used to set or reset the output. 

Truth Table (Clock Enabled) 

Feature Description

Storage Capacity Stores 1 bit

Triggering Edge-triggered

Memory Yes

Clock Dependency Required

Feedback Present

Feature Latch Flip-Flop

Sensitivity Level-sensitive Edge-triggered

Clock Not mandatory Mandatory

Output 
Change

Any time during 
enable

Only at clock 
edge

Reliability Less More

S R Q(n+1) Operation

0 0 Q(n) No Change

0 1 0 Reset

1 0 1 Set



 
Characteristic Equation 

Limitation 

The condition S = R = 1 produces an invalid state, which makes SR flip-flop unreliable. 

2. JK Flip-Flop 

JK flip-flop is an improved version of SR flip-flop where the invalid condition is removed. 

Inputs: 

• J (Set) 

• K (Reset) 

Truth Table 

Characteristic Equation 

Advantage 

Eliminates invalid state and allows toggle operation, making it suitable for counters. 

Disadvantage 

At high clock speeds, race around condition may occur. 

3. D (Data / Delay) Flip-Flop 

D flip-flop has a single input (D) and stores the value present at input D at the clock edge. 

Truth Table 

1 1 Invalid Not Allowed

J K Q(n+1) Operation

0 0 Q(n) No Change

0 1 0 Reset

1 0 1 Set

1 1 Toggle Complement

D Q(n+1)

0 0



 
Characteristic Equation 

Advantages 

• No invalid condition 

• Simple operation 

• Widely used in registers and memory 

Example 

If D = 1 at the rising edge of clock, output Q becomes 1 and remains unchanged until next 
clock pulse. 

4. T (Toggle) Flip-Flop 

T flip-flop toggles the output when T = 1 and holds the state when T = 0. 

Truth Table 

Characteristic Equation 

Application 

Used in binary counters and frequency division. 

Edge Triggering in Flip-Flops 

Types 

1. Positive Edge Triggered (↑) 

2. Negative Edge Triggered (↓) 

Flip-flop changes state only at the edge, not throughout the clock level. 

Timing Parameters of Flip-Flops 

1 1

T Q(n+1)

0 Q(n)

1

Parameter Description

Setup Time Data stable before clock



Applications of Flip-Flops 

• Registers, Counters, Memory Units, Shift Registers, Control Circuits, Digital Clocks 

Comparison of Flip-Flops 

11. Registers 

A register is a group of flip-flops used to store binary information (multi-bit data). 
Each flip-flop stores one bit (0 or 1). 
Thus, a n-bit register can store n bits of data. 

Registers are one of the most important elements of the CPU as they provide temporary 
storage and fast access to data during processing. 

Purpose of Registers 

• To store binary data temporarily during computation. 

• To hold operands, intermediate results, and addresses during instruction 
execution. 

• To act as buffers between CPU and memory. 

• To shift or manipulate data using shift registers. 

Structure of a Register 

Each register is made up of flip-flops connected in parallel so that each bit is stored 
simultaneously. 

Example: 4-bit Register 

A 4-bit register consists of 4 flip-flops (FF0, FF1, FF2, FF3), each capable of storing one bit. 

Hold Time Data stable after clock

Propagation Delay Clock to output delay

Feature SR JK D T

Inputs 2 2 1 1

Invalid State Yes No No No

Toggle No Yes No Yes

Complexity Low Medium Low Low

Flip-Flop Bit Stored Output

FF0 Least Significant Bit (LSB) Q0

FF1 Next Bit Q1



Binary Number Stored: Q3 Q2 Q1 Q0 

If Q3Q2Q1Q0 = 1010 → Decimal 10 

Types of Registers 

Registers are classified according to how data is entered or removed. 

A. Serial-In Serial-Out (SISO) Register 

• Data bits are entered one at a time with each clock pulse. 

• Output bits appear one at a time as well. 

Application: Serial communication systems (UART). 

B. Serial-In Parallel-Out (SIPO) Register 

• Data enters serially (bit-by-bit). 

• After n clock pulses, all bits are available in parallel. 

Example: 

FF2 Next Bit Q2

FF3 Most Significant Bit (MSB) Q3

Type Full Form Description Example Application

SISO Serial Input Serial Output Data enters and leaves one bit at a time Serial communication

SIPO Serial Input Parallel 
Output

Data enters serially and appears on all outputs 
simultaneously

Serial-to-parallel 
conversion

PISO Parallel Input Serial 
Output Data enters simultaneously and exits one bit at a time Parallel-to-serial 

conversion

PIPO Parallel Input Parallel 
Output Data enters and leaves simultaneously High-speed data transfer

Clock Pulse Input Output

1 1 -

2 0 1

3 1 0

4 0 1

Clock Input Q3 Q2 Q1 Q0



Use: Converts serial input data to parallel output. 

C. Parallel-In Serial-Out (PISO) Register 

• All bits are entered simultaneously (parallel). 

• Data is then shifted out serially (bit-by-bit). 

Use: Parallel to serial conversion (e.g., printer communication). 

D. Parallel-In Parallel-Out (PIPO) Register 

• All bits are entered and retrieved simultaneously. 

• Fastest data transfer method. 

Use: Inside CPU for storing and transferring full words (e.g., 8-bit accumulator). 

Register Applications 

1. Temporary data storage 

2. Data shifting and rotation 

3. Serial/parallel data conversion 

4. Instruction registers in processors 

5. Buffer registers in I/O devices 

1 1 0 0 0 1

2 0 0 0 1 0

3 1 0 1 0 1

4 0 1 0 1 0

Step Parallel Input Serial Output

Load 1101 -

Shift 1 - 1

Shift 2 - 0

Shift 3 - 1

Shift 4 - 1

Cloc
k

Input 
(ABCD)

Output 
(Q3Q2Q1Q0)

1 1011 1011



12. Counters 

A counter is a sequential circuit that counts clock pulses or events. 
It is made of flip-flops connected in sequence, where each flip-flop represents one bit of 
the count. 

Counters are essential for time measurement, event tracking, digital clocks, and control 
applications. 

Types of Counters 

1. Asynchronous Counter (Ripple Counter) 

• Each flip-flop is triggered by the output of the previous one. 

• The clock signal is applied only to the first flip-flop. 

• Propagation delay accumulates as count progresses. 

Example: 3-bit Ripple Counter 

Explanation: 
Each flip-flop toggles when its previous output changes from 1 to 0. 

2. Synchronous Counter 

• All flip-flops are triggered simultaneously by the same clock pulse. 

• Count changes occur at the same instant → faster and more reliable. 

Clock Pulse Q2 Q1 Q0 Decimal

0 0 0 0 0

1 0 0 1 1

2 0 1 0 2

3 0 1 1 3

4 1 0 0 4

5 1 0 1 5

6 1 1 0 6

7 1 1 1 7

Clock Q2 Q1 Q0 Decimal

1 0 0 1 1

2 0 1 0 2

3 0 1 1 3



3. Up Counter 

Counts from 000 → 111 (binary increment). 
Used in timers, event counting, etc. 

4. Down Counter 

Counts in reverse order, from 111 → 000. 
Used in countdown timers. 

5. Up/Down Counter 

Can operate in both up and down modes depending on control input. 

6. Ring Counter 

A circular shift register where the output of the last flip-flop is fed into the first one. 

Example: 
For a 4-bit ring counter → Sequence: 1000, 0100, 0010, 0001 

7. Johnson Counter 

Modified ring counter where complement of last flip-flop is fed to first input. 

Example: 
4-bit Johnson counter → 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001 

Applications of Counters 

• Digital clocks and timers 

• Frequency dividers 

• Memory address counting 

• Event counters in processors 

• Pulse and signal generation 

13. Sequential Circuits 

Sequential circuits are digital circuits whose output depends on both current inputs and 
past outputs (previous states). 
Unlike combinational circuits, they have memory elements (flip-flops) that store the state 
of the system. 

4 1 0 0 4

5 1 0 1 5



Types of Sequential Circuits 

Components of Sequential Circuits 

1. Flip-Flops: Memory elements to store binary information. 

2. Logic Gates: Implement combinational logic to determine next state. 

3. Clock: Provides timing synchronization. 

4. Feedback Paths: Allow previous output to affect next state. 

Basic Model 

 INPUT ───▶       COMBINATIONAL     ──▶    OUTPUT 
                              CIRCUIT    
                                  │ 
                                 ▼ 
                             
                            MEMORY    
                           ELEMENTS  

Sequential Circuit Operation Example 

Let’s consider a simple 2-bit binary counter (synchronous). 

Explanation: 

• On each clock pulse, output advances by 1. 

• Flip-flops retain previous state to determine next output. 

State Table 

Type Trigger Description Example

Synchronous Clock-based All flip-flops triggered simultaneously by a clock pulse Registers, Synchronous 
Counters

Asynchronous Input-based Flip-flops change state as soon as input changes Ripple Counters, Timers

Clock Pulse State (Q1Q0) Decimal Output

0 0 0

1 1 1

2 10 2

3 11 3

4 0 0 (Repeat)



State Diagram 

Represented as circles (states) and arrows (transitions). 

(00) → (01) → (10) → (11) 
  ↑                 ↓ 
  └─────────────────┘ 

Applications of Sequential Circuits 

• Counters and timers 

• Traffic light controllers 

• Elevator control systems 

• Microprocessor control units 

• Digital communication protocols 

Summary 

Present State Input Next State Output

0 1 1 0

1 1 10 0

10 1 11 0

11 1 0 1

Concept Description Examples

Register Stores multi-bit data using flip-flops SISO, SIPO, PISO, PIPO

Counter Counts clock pulses or events Asynchronous, Synchronous, 
Johnson

Sequential 
Circuit

Output depends on current and past 
input Counters, Registers, Control Logic



PART B – ARITHMETIC/LOGIC UNIT (ALU) 

The Arithmetic Logic Unit (ALU) is a core component of the CPU that performs all arithmetic 
and logical operations. 

1. Number Representation 

Computers use binary numbers to represent and process data. 

1.1 Number Systems 

2. Binary Arithmetic 

Addition Rules 

Subtraction Rules 

Multiplication Example 

101 × 11 = 1111 

System Base Digits Example (Decimal 25)

Binary 2 0,1 11001

Octal 8 0–7 31

Decimal 10 0–9 25

Hexadecimal 16 0–9, A–F 19

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

A B Borrow Difference

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0



Division Example 

11011 ÷ 10 = 1101 

3. Floating-Point Arithmetic 

Floating-point arithmetic is a method used by computers to represent and process real 
numbers (numbers with fractional parts) in binary form. 
It allows representation of very large and very small numbers that cannot be handled 
efficiently using fixed-point representation. 

Need for Floating-Point Representation 

Fixed-point representation has: 

• Limited range 

• Fixed precision 

Floating-point representation overcomes these limitations by storing numbers in scientific 
notation form. 

 
General Floating-Point Representation 

A floating-point number is represented as: 

Where: 

• S = Sign bit (0 → positive, 1 → negative) 

• M = Mantissa (significand) 

• E = Exponent 



General Format 

IEEE-754 Floating-Point Standard 

The IEEE-754 standard defines how floating-point numbers are represented and processed in 
computers. 

Single Precision (32-bit) 

Double Precision (64-bit) 

Exponent Bias 

IEEE-754 uses a biased exponent to represent both positive and negative exponents. 

Actual Exponent = Stored Exponent - Bias 

Representation of a Floating-Point Number (Example) 

Represent +5.75 in IEEE-754 single precision. 

Step 1: Convert to Binary 

5.75₁₀ = 101.11₂ 

Step 2: Normalize 

101.11 = 1.0111 × 2² 

Sign Exponent Mantissa

1 bit k bits n bits

Field Bits

Sign 1

Exponent 8

Mantissa 23

Field Bits

Sign 1

Exponent 11

Mantissa 52

Precision Bias

Single 127
Double 1023



Step 3: Identify Components 

• Sign bit (S) = 0 

• Mantissa (M) = 01110000000000000000000 

• Exponent = 2 + 127 = 129 → 10000001 

Final Representation 

0 | 10000001 | 01110000000000000000000 

4. Floating-Point Arithmetic Operations 

4.1 Floating-Point Addition 

Steps 

1. Compare exponents 

2. Align mantissas (shift smaller exponent) 

3. Add or subtract mantissas 

4. Normalize result 

5. Round if required 

Example   

2.5 + 1.25 

2.5  = 1.01 × 2¹ 
1.25 = 1.01 × 2⁰ 

Align exponents: 

1.01 × 2¹ 
0.101 × 2¹ 

Add mantissas: 

1.01 
+0.101 
------ 
1.111 × 2¹ 

4.2 Floating-Point Subtraction 

Performed same as addition, except mantissas are subtracted after exponent alignment. 

4.3 Floating-Point Multiplication 

Steps 

1. Multiply mantissas 



2. Add exponents 

3. Normalize result 

4. Adjust sign 

Example 

(1.5) × (2.0) 

1.5 = 1.1 × 2⁰ 
2.0 = 1.0 × 2¹ 

Multiply mantissas: 

1.1 × 1.0 = 1.1 

Add exponents: 

0 + 1 = 1 

Final result: 

1.1 × 2¹ = 3.0 

4.4 Floating-Point Division 

Divide:   6.0 ÷ 1.5 

Step 1: Convert to Normalized Binary Form 

6.0 = 1.1 × 2² 
1.5 = 1.1 × 2⁰ 

Step 2: Divide Mantissas 

1.1 ÷ 1.1 = 1.0 

Step 3: Subtract Exponents 

2 − 0 = 2 

Step 4: Normalize Result 

1.0 × 2²   (already normalized) 

Final Result 

6.0 ÷ 1.5 = 4.0 



4.5. Normalization 

Normalization is the process of adjusting the mantissa and exponent of a floating-point 
number so that the mantissa lies in the standard form: 

[1.xxxxx] 

where only one non-zero digit appears to the left of the binary point. 

4.6. Rounding Modes 

4.7. Special Floating-Point Values 

4.8. Errors in Floating-Point Arithmetic 

Rounding Error 

A rounding error occurs when a real number cannot be represented exactly in the floating-
point format and must be approximated to the nearest representable value. 

Overflow 

Overflow occurs when the result of a floating-point operation is too large to be represented 
within the available exponent range. 

Underflow 

Underflow occurs when the result of a floating-point operation is too small (close to zero) to be 
represented in normalized form. 

Mode Description

Round to Nearest Default, most accurate

Round toward Zero Truncation

Round toward +∞ Ceiling

Round toward −∞ Floor

Value Meaning

+0, −0 Signed zero

+∞, −∞ Overflow

NaN Not a Number

Denormalized Very small numbers



UNIT 2– Register Transfer Language & Micro-operations 

Register Transfer Language and Micro-operations: Concept of bus, data movement 
among registers, a language to represent conditional data transfer, data movement from/to 
memory. Design of Arithmetic & Logic Unit and Control Unit Control design hardwired control, 
micro programmed arithmetic and logical operations along with register transfer, timing in 
register. 

1. Introduction 

A digital computer executes instructions by performing a sequence of simple internal 
operations. These internal operations occur at the hardware level and involve registers, buses, 
arithmetic circuits, and control signals. To describe such operations precisely, Register 
Transfer Language (RTL) is used. RTL provides a symbolic and systematic method to 
represent how data is transferred and processed inside the CPU. 

Micro-operations are the smallest functional steps carried out by the processor. Each micro-
operation is synchronized with the system clock and forms the building block of instruction 
execution. 

2. Register Transfer Language (RTL) 

Register Transfer Language is a notation used to describe the transfer of data between 
registers and the execution of arithmetic or logical operations on that data. 

Key Characteristics of RTL 

• Describes operations at register level 

• Independent of programming language 

• Closely related to hardware structure 

• Used for datapath and control unit design 

Basic RTL Statement 

Destination ← Source 
Example 

R1 ← R2 
This statement means that the contents of register R2 are transferred into register R1 at the 
next clock pulse. 

3. Micro-operations 

Micro-operations are elementary operations performed on data stored in registers. An 
instruction is executed as a sequence of micro-operations. 

Types of Micro-operations 

1. Register transfer micro-operations 

2. Arithmetic micro-operations 



3. Logical micro-operations 

4. Shift micro-operations 

Example (Instruction Decomposition) 

Instruction: ADD R1, R2 

Micro-operations: 

T1: A ← R1 
T2: B ← R2 
T3: R1 ← A + B 
Each step represents a single micro-operation executed in one clock cycle. 

4. Concept of Bus 

A bus is a group of parallel wires that provides a shared communication path between registers 
and other components of the CPU. 

Types of Buses in a Computer System 

A computer system generally uses three types of buses: 

1. Data Bus 
The data bus carries actual data between registers, the ALU, and memory. Its width 
determines how much data can be transferred at one time. 

2. Address Bus 
The address bus carries memory addresses from the CPU to the memory unit. It is 
unidirectional and determines the maximum addressable memory size. 

3. Control Bus 
The control bus carries control signals such as read, write, and clock signals. These 
signals coordinate and control the operation of all components connected to the bus. 

Role of Bus in Register Transfer 

In register transfer operations, the bus acts as an intermediate path. When a register transfer 
such as 

R2 ← R1 
is executed, register R1 places its contents on the bus, and register R2 loads the data from the 
bus on the next clock edge. This mechanism ensures reliable and synchronized data transfer. 

Importance of Bus System 

The bus system: 

• Reduces hardware complexity 

• Improves scalability of the processor 

• Enables efficient data communication 



• Plays a key role in datapath and control unit design 

5. Data Movement Among Registers 

Data movement among registers is a fundamental operation in a computer system and forms 
the basis of instruction execution. Registers are high-speed storage elements located within 
the CPU, and efficient transfer of data between them is essential for achieving high 
performance. 

Register-to-register data transfer is typically carried out using a common internal bus. When 
a data transfer operation is required, the control unit selects one register as the source and 
enables it to place its contents on the bus. At the same time, the destination register is 
enabled through a load control signal. On the active edge of the system clock, the destination 
register captures the data present on the bus. 

This process ensures that data transfer is synchronous, reliable, and free from conflicts. To 
avoid ambiguity and data corruption, only one register is allowed to place its contents on the 
bus at any given time. The control unit strictly regulates this process using selection and 
enable signals. 

Register Transfer Language Representation 

Register-to-register data movement is expressed using Register Transfer Language (RTL). A 
typical RTL statement is: 

R2 ← R1 
This statement indicates that the contents of register R1 are transferred into register R2 during 
a clock cycle. 

Control Signals in Register Transfer 

The movement of data among registers is governed by several control signals generated by the 
control unit: 

• Source Select Signal determines which register places its data on the bus. 

• Load Enable Signal allows the destination register to accept data. 

• Clock Signal synchronizes the data transfer operation. 

These signals work together to ensure that the transfer occurs correctly and at the appropriate 
time. 

Example of Register-to-Register Data Transfer 

Consider the operation: 

R3 ← R1 
The control unit first selects register R1 as the source and enables it to place its contents on 
the bus. Simultaneously, the load signal of register R3 is activated. When the clock pulse 
occurs, register R3 captures the data from the bus, completing the transfer. 

Significance of Data Movement Among Registers 

Data movement among registers plays a critical role in processor operation: 



• It reduces the need for frequent memory access. 

• It improves instruction execution speed. 

• It enables arithmetic and logical operations within the ALU. 

• It supports efficient instruction sequencing and control. 

6. Conditional Data Transfer 

Conditional data transfer is a register transfer operation that takes place only when a specified 
condition is satisfied. Unlike unconditional register transfers, conditional transfers depend on 
the outcome of previous operations and are essential for decision-making and control flow in a 
computer system. 

In a processor, conditions are generally derived from status flags generated by the Arithmetic 
and Logic Unit (ALU). These flags indicate specific characteristics of the result of an operation, 
such as whether the result is zero, whether a carry was generated, or whether an overflow 
occurred. The control unit evaluates these flags to determine whether a particular data transfer 
should occur. 

Register Transfer Language Representation 

Conditional data transfer is expressed in Register Transfer Language (RTL) using the following 
notation: 

Condition : Destination ← Source 
This notation means that the data transfer from the source register to the destination register 
will occur only if the specified condition evaluates to true. 

Example 

(Z = 1) : PC ← AR 
This statement indicates that the contents of the Address Register (AR) are transferred to the 
Program Counter (PC) only if the Zero flag is set. 

Role of Status Flags in Conditional Transfer 

Status flags are binary indicators that reflect the outcome of arithmetic or logical operations. 
Common status flags include: 

• Zero Flag (Z): Set when the result of an operation is zero 

• Carry Flag (C): Set when a carry is generated in arithmetic operations 

• Sign Flag (S): Indicates the sign of the result 

• Overflow Flag (V): Indicates signed arithmetic overflow 

These flags are stored in a flag register and are continuously monitored by the control unit to 
enable or disable conditional data transfers. 

Working of Conditional Data Transfer 

When a conditional transfer instruction is executed, the control unit performs the following 
steps: 



1. Evaluates the specified condition based on the status flags. 

2. If the condition is true, enables the source register to place its data on the bus. 

3. Activates the load signal of the destination register. 

4. Transfers the data on the next clock pulse. 

If the condition is false, the transfer is skipped, and the processor proceeds to the next 
instruction. 

Applications of Conditional Data Transfer 

Conditional data transfer is widely used in processor operations such as: 

• Branch and jump instructions 

• Loop control mechanisms 

• Decision-making in programs 

• Error and exception handling 

Without conditional data transfer, it would not be possible to implement control structures such 
as if-else statements and loops at the hardware level. 

Importance in Instruction Execution 

Conditional data transfer enables the processor to modify the sequence of instruction execution 
based on computed results. This capability is fundamental to program control flow and efficient 
execution of algorithms. 

7. Data Transfer Between Memory and Registers 

Data movement between the CPU and main memory is an essential part of instruction 
execution in a computer system. Unlike register-to-register transfers, memory access 
operations involve additional control signals and require more time due to the relatively slower 
speed of main memory. These operations are performed using specific registers and follow a 
well-defined sequence of micro-operations. 

The CPU communicates with memory through two special-purpose registers: the Address 
Register (AR) and the Data Register (DR). The Address Register holds the memory address 
of the data to be accessed, while the Data Register temporarily stores the data being 
transferred between the CPU and memory. 

Memory Read Operation 

A memory read operation transfers data from a memory location into a CPU register. This 
operation is required during instruction fetch and when an instruction needs data stored in 
memory. 

The Register Transfer Language (RTL) representation of a memory read operation is: 

DR ← M[AR] 
This statement indicates that the contents of the memory location specified by the address in 
AR are transferred into the Data Register (DR). 



Sequence of Operations in Memory Read 

During a memory read operation, the following steps occur: 

1. The memory address is loaded into the Address Register (AR). 

2. The control unit activates the memory read control signal. 

3. The memory places the data stored at the specified address onto the data bus. 

4. The data is loaded into the Data Register (DR) on the active clock edge. 

This sequence ensures reliable and synchronized data transfer from memory to the CPU. 

Memory Write Operation 

A memory write operation transfers data from the CPU to a memory location. This operation is 
used when the result of a computation must be stored in memory. 

The RTL representation of a memory write operation is: 

M[AR] ← DR 
This statement indicates that the contents of the Data Register (DR) are written into the 
memory location specified by the address in AR. 

Sequence of Operations in Memory Write 

The memory write operation proceeds as follows: 

1. The target memory address is placed in the Address Register (AR). 

2. The data to be stored is loaded into the Data Register (DR). 

3. The control unit activates the memory write control signal. 

4. The data in DR is written to the specified memory location. 

Control Signals in Memory Transfer 

Memory access operations are controlled by specific signals generated by the control unit: 

• Read Signal indicates a memory read operation. 

• Write Signal indicates a memory write operation. 

• Clock Signal synchronizes the operation. 

These signals ensure that memory operations occur correctly and without data corruption. 

Difference Between Register Transfer and Memory Transfer 

Register-to-register transfers are faster because registers are located within the CPU and 
operate at high speed. Memory transfers are slower due to memory access delays and 
therefore require careful timing and control. 



Importance of Memory Data Transfer 

Data movement from and to memory: 

• Enables instruction fetch and execution 

• Allows storage of program data and results 

• Supports large data handling beyond register capacity 

8. Arithmetic and Logic Unit (ALU) 

The Arithmetic and Logic Unit (ALU) is a fundamental component of the Central Processing Unit 
(CPU) responsible for performing all arithmetic and logical operations required during 
instruction execution. It acts as the computational core of the processor and plays a crucial 
role in data processing and decision-making. 

The ALU is a combinational logic circuit, meaning that its output depends solely on its 
current inputs and control signals, without requiring any internal memory. It receives input 
data from registers, performs the specified operation, and produces the result, which is then 
stored back into a register. 

Functions of the ALU 

The ALU performs two primary categories of operations: 

Arithmetic Operations 

Arithmetic operations involve numerical calculations on binary data. Common arithmetic 
operations include: 

• Addition 

• Subtraction 

• Increment 

• Decrement 

These operations are essential for calculations, address computation, and program control. 

Logical Operations 

Logical operations manipulate data at the bit level. Common logical operations include: 

• AND 

• OR 

• XOR 

• NOT 

Logical operations are widely used for masking, comparison, and decision-making processes. 



Inputs to the ALU 

The ALU typically receives the following inputs: 

• Operand A from a register 

• Operand B from another register or constant 

• Control signals specifying the operation to be performed 

The control signals are generated by the control unit based on the instruction being executed. 

Outputs of the ALU 

The ALU produces: 

• Result of the operation, which is sent to a destination register 

• Status flags, which indicate specific conditions resulting from the operation 

Status Flags Generated by the ALU 

Status flags are single-bit indicators stored in a flag register. Common flags include: 

• Zero Flag (Z): Set if the result of the operation is zero 

• Carry Flag (C): Set if a carry is generated in arithmetic operations 

• Sign Flag (S): Indicates the sign of the result 

• Overflow Flag (V): Indicates signed arithmetic overflow 

These flags are essential for conditional operations and control flow. 

ALU Control and Operation Selection 

The specific operation performed by the ALU is determined by control signals from the control 
unit. These signals select the appropriate arithmetic or logical function within the ALU. 

For example: 

• An ADD control signal activates the adder circuit 

• An AND control signal activates the logical AND circuit 

Only one operation is performed at a time, based on the active control signal. 

Role of ALU in Register Transfer Operations 

The ALU works closely with registers during instruction execution. Data is transferred from 
registers to the ALU, processed, and then transferred back to a register. 

Example RTL representation: 

R3 ← R1 + R2 



This statement indicates that the contents of registers R1 and R2 are added in the ALU, and 
the result is stored in register R3. 

9. Control Unit 

The Control Unit is a vital component of the Central Processing Unit (CPU) that directs and 
coordinates the activities of all other hardware components. While the Arithmetic and Logic 
Unit performs computations and registers store data, the Control Unit ensures that each 
operation occurs in the correct sequence and at the correct time. 

The Control Unit does not process data directly. Instead, it generates control signals that 
regulate data movement, arithmetic and logical operations, and memory access during 
instruction execution. 

Functions of the Control Unit 

The primary functions of the Control Unit include: 

• Fetching instructions from memory 

• Decoding the instruction to determine the required operation 

• Generating control signals for registers, ALU, and memory 

• Sequencing micro-operations in synchronization with the system clock 

Through these functions, the Control Unit orchestrates the entire instruction execution process. 

Inputs to the Control Unit 

The Control Unit receives several inputs that influence its operation: 

• Instruction Opcode from the Instruction Register (IR) 

• Status Flags from the ALU 

• Clock Signal to synchronize operations 

• Interrupt Signals, if supported by the system 

These inputs allow the Control Unit to make decisions regarding the execution path of 
instructions. 

Outputs of the Control Unit 

Based on its inputs, the Control Unit generates output signals such as: 

• Register load and enable signals 

• ALU operation select signals 

• Memory read and write signals 

• Bus control signals 



These signals ensure proper coordination between different components of the CPU. 

Role of the Control Unit in the Instruction Cycle 

The Control Unit manages all phases of the instruction cycle, including: 

1. Instruction Fetch – retrieving the instruction from memory 

2. Instruction Decode – interpreting the opcode 

3. Instruction Execute – performing the required operation 

4. Result Storage – storing the result in a register or memory 

Each phase is implemented through a sequence of micro-operations controlled by the Control 
Unit. 

Types of Control Unit Design 

Control units are broadly classified into two types based on their design approach: 

• Hardwired Control Unit 

• Microprogrammed Control Unit 

Each type has its own advantages and limitations, which are discussed in subsequent sections. 

Importance of the Control Unit 

The Control Unit is essential for correct processor operation because: 

• It ensures proper timing and sequencing of operations 

• It enables coordination among registers, ALU, and memory 

• It supports conditional and branching instructions 

Without the Control Unit, the CPU components would operate independently and fail to execute 
instructions correctly. 

10. Hardwired Control Unit 

A Hardwired Control Unit is a type of control unit in which control signals are generated 
using fixed hardware logic such as logic gates, decoders, multiplexers, and flip-flops. In this 
approach, the control logic is directly implemented in hardware and is designed to produce the 
required control signals for each micro-operation. 

The behavior of a hardwired control unit is determined at the time of hardware design and 
cannot be easily modified after implementation. It is commonly used in processors where high-
speed operation is a primary requirement. 

Working Principle of Hardwired Control Unit 



The hardwired control unit operates as a finite state machine (FSM). Each state of the FSM 
corresponds to a specific step in the instruction execution cycle. Transitions between states are 
governed by the system clock and the opcode of the instruction being executed. 

The instruction opcode is decoded using combinational logic circuits. Based on the decoded 
opcode and the current timing step, the control unit generates the appropriate control signals 
required to activate specific micro-operations. 

Components Used in Hardwired Control 

The hardwired control unit consists of the following major components: 

• Instruction Decoder, which decodes the opcode 

• Timing and Control Logic, which generates timing signals 

• Logic Gates and Flip-Flops, which implement the control logic 

These components work together to produce control signals at precise clock intervals. 

Advantages of Hardwired Control Unit 

The hardwired control unit offers several advantages: 

• Very fast operation due to direct hardware implementation 

• Low execution delay 

• Suitable for simple and frequently executed instruction sets 

Limitations of Hardwired Control Unit 

Despite its speed, the hardwired control unit has some limitations: 

• Lack of flexibility 

• Difficult to modify or extend the instruction set 

• Complex design for large and complex processors 

Any change in the instruction set or control logic requires redesigning the hardware. 

Applications of Hardwired Control Unit 

Hardwired control units are commonly used in: 

• Reduced Instruction Set Computers (RISC) 

• High-performance processors 

• Systems where speed is more important than flexibility 

Importance in Processor Design 



The hardwired control unit plays a critical role in achieving high execution speed. By 
generating control signals directly through hardware logic, it minimizes control delays and 
ensures efficient instruction execution. 

11. Microprogrammed Control Unit 

A Microprogrammed Control Unit is a type of control unit in which the control signals 
required for instruction execution are generated by executing a sequence of 
microinstructions stored in a special memory called control memory. Unlike the hardwired 
control unit, this approach uses a software-like method to control hardware operations. 

Each instruction in the machine language is implemented as a sequence of microinstructions, 
collectively known as a microprogram. This method provides greater flexibility and ease of 
modification in processor design. 

Control Memory 

Control memory is a read-only memory (ROM) or writable control store that contains 
microinstructions. Each microinstruction specifies the control signals needed to perform one or 
more micro-operations. 

The contents of control memory define the behavior of the processor at the micro-operation 
level. Modifying the microprogram allows changes in instruction behavior without altering 
hardware circuitry. 

Microinstruction 

A microinstruction is a binary word that contains information required to generate control 
signals and determine the next microinstruction to be executed. 

A typical microinstruction consists of: 

• A control field that specifies control signals 

• A condition field that allows conditional branching 

• A next address field that specifies the address of the next microinstruction 

Working Principle of Microprogrammed Control Unit 

The microprogrammed control unit operates by fetching microinstructions from control 
memory using a microprogram counter. Each fetched microinstruction is decoded to 
generate the required control signals. 

After execution of a microinstruction, the next microinstruction address is determined based on 
sequencing logic and condition evaluation. This process continues until the execution of the 
current machine instruction is complete. 

Advantages of Microprogrammed Control Unit 

The microprogrammed control unit offers several advantages: 

• High flexibility 



• Easy modification and expansion of instruction set 

• Simpler design for complex instruction sets 

Limitations of Microprogrammed Control Unit 

Despite its flexibility, the microprogrammed control unit has some disadvantages: 

• Slower operation due to control memory access 

• Additional memory requirement 

• Lower performance compared to hardwired control units 

Applications of Microprogrammed Control Unit 

Microprogrammed control units are widely used in: 

• Complex Instruction Set Computers (CISC) 

• General-purpose processors 

• Systems requiring frequent instruction updates 

Comparison with Hardwired Control Unit 

While hardwired control units emphasize speed, microprogrammed control units emphasize 
flexibility. Modern processors often use a hybrid approach, combining the advantages of both 
techniques. 

12. Arithmetic and Logical Operations with Register Transfer 

Arithmetic and logical operations with register transfer describe how data is moved between 
registers and processed by the Arithmetic and Logic Unit (ALU) during instruction execution. 
These operations form the core of computation in a digital computer and are implemented 
using a combination of register transfers and ALU micro-operations. 

In this process, operands are first transferred from registers to the ALU inputs, the required 
arithmetic or logical operation is performed, and the result is then transferred back to a 
destination register. All these actions are controlled and synchronized by the control unit. 

Arithmetic Operations with Register Transfer 

Arithmetic operations involve numerical manipulation of binary data stored in registers. 
Common arithmetic operations include addition, subtraction, increment, and decrement. 

An arithmetic operation using register transfer can be expressed in Register Transfer Language 
(RTL) as: 

R3 ← R1 + R2 
This statement indicates that the contents of registers R1 and R2 are transferred to the ALU, 
added together, and the result is stored in register R3. 

Sequence of Arithmetic Register Transfer 



The execution of an arithmetic operation generally follows these steps: 

1. Transfer the first operand from a register to the ALU input. 

2. Transfer the second operand from another register to the ALU input. 

3. Perform the arithmetic operation inside the ALU. 

4. Transfer the result back to the destination register. 

Each step corresponds to one or more micro-operations controlled by the control unit. 

Logical Operations with Register Transfer 

Logical operations perform bit-level manipulation on register contents. These operations are 
essential for decision-making, masking, and comparison tasks. 

Logical operations using register transfer can be represented as: 

R1 ← R1 AND R2 
This statement means that a bitwise AND operation is performed between the contents of 
registers R1 and R2, and the result is stored back in R1. 

Common Logical Operations 

• AND: Used for masking selected bits 

• OR: Used for setting bits 

• XOR: Used for bit comparison 

• NOT: Used for bit inversion 

Role of Status Flags 

During arithmetic and logical operations, the ALU generates status flags such as Zero, Carry, 
Sign, and Overflow. These flags reflect the outcome of the operation and are stored in a flag 
register. 

The control unit uses these flags to: 

• Enable conditional data transfer 

• Perform branch operations 

• Control program flow 

Synchronization with Register Transfer 

All arithmetic and logical operations are synchronized using the system clock. Register 
transfers occur at specific clock edges, ensuring that data is stable and correctly processed. 

The control unit ensures that: 

• Source registers are selected correctly 



• ALU control signals are activated at the right time 

• Destination registers load the result without conflict 

Importance of Arithmetic and Logical Register Transfers 

Arithmetic and logical operations with register transfer are fundamental because: 

• They enable execution of computational instructions 

• They form the basis of higher-level program operations 

• They integrate data movement and processing efficiently 

13. Timing in Register Transfer 

Timing in register transfer refers to the coordination and sequencing of register transfer 
operations and micro-operations with respect to the system clock. Since a digital computer 
operates as a synchronous system, all internal operations must occur in a well-defined order to 
ensure correct data processing and reliable system behavior. 

Each register transfer and micro-operation is executed during a specific clock cycle, and the 
timing of these operations is controlled by the control unit. 

Role of the System Clock 

The system clock generates a series of uniform pulses that synchronize all operations within 
the CPU. These clock pulses define the timing boundaries within which data transfers and 
processing occur. 

Registers are typically edge-triggered, meaning they load data only at a specific clock 
transition, such as the rising or falling edge. This ensures that data is stable before and after 
the transfer, preventing incorrect data capture. 

Timing Steps in Register Transfer 

The execution of an instruction is divided into a sequence of timing steps, commonly denoted 
as T0, T1, T2, and so on. Each timing step corresponds to one clock cycle. 

During each timing step, one or more micro-operations may be performed. The control unit 
activates the required control signals for the specific timing step, ensuring that the correct 
micro-operations are executed in sequence. 

Example of Timed Register Transfer 

Consider a simple instruction fetch operation. The register transfer sequence may be 
expressed as: 

T0: AR ← PC 
T1: DR ← M[AR] 
T2: IR ← DR 
T3: PC ← PC + 1 



Each register transfer occurs in a separate timing step, synchronized with the system clock. 
This sequence ensures that data flows correctly from memory to the instruction register and 
that the program counter is updated properly. 

Control Unit and Timing 

The control unit plays a central role in managing timing. It uses a timing generator, often 
implemented as a counter or sequence generator, to produce timing signals. 

These timing signals are combined with instruction decoding logic to determine which control 
signals should be activated during each clock cycle. This mechanism ensures orderly execution 
of micro-operations. 

Importance of Proper Timing 

Proper timing in register transfer is critical for several reasons: 

• It prevents data hazards and race conditions 

• It ensures data stability during transfer 

• It guarantees correct sequencing of micro-operations 

• It enables reliable instruction execution 

Incorrect timing can lead to data corruption, incorrect computation, and system malfunction. 

Synchronous Nature of Register Transfer 

Register transfer operations are synchronous in nature, meaning that all components operate 
under the control of a common clock. This synchronization simplifies processor design and 
ensures predictable behavior. 

By aligning register transfers with clock pulses, the processor can execute complex instructions 
reliably and efficiently. 



UNIT 3– Instruction & Addressing: 

Instruction and Addressing: A simple computer organization and instruction set, instruction 
formats, addressing modes, instruction cycle, instruction execution in terms of 
microinstructions, interrupt cycle, concepts of interrupt and simple 1/0 organization, 
Synchronous & Asynchronous data transfer, Data Transfer Mode: Program Controlled, Interrupt 
driven, DMA (Direct Memory Access). Implementation of processor using the building blocks. 

1. A Simple Computer Organization and Instruction Set 

A simple computer organization is an abstract model designed to explain the internal 
functioning of a digital computer in a clear and systematic manner. It helps in understanding 
how instructions are stored, fetched, decoded, and executed using basic hardware 
components. Although simplified, this model captures the essential features of real computer 
systems and forms the foundation for studying advanced computer architectures. 

A simple computer typically consists of a Central Processing Unit (CPU), main memory, and 
input/output units. The CPU includes a small set of registers, an Arithmetic and Logic Unit 
(ALU), and a control unit. The instruction set of a simple computer is limited but sufficient to 
perform data transfer, arithmetic, logical, and control operations. 

Instruction Set of a Simple Computer 

An instruction set is the complete collection of machine-level instructions that a processor can 
execute. In a simple computer, the instruction set is deliberately kept small to simplify 
hardware design and instruction exe1.cution. 

Each instruction is represented in binary form and generally consists of two main parts: 

• An opcode, which specifies the operation to be performed 

• An operand or address field, which specifies the data or its location 

The instruction set typically includes memory reference instructions, register reference 
instructions, and input/output instructions. 

2. Instruction Formats 

An instruction format defines the layout of bits within an instruction. It specifies how many 
bits are allocated for the opcode, addressing information, and operand fields. The design of 
instruction formats directly affects instruction decoding complexity and execution speed. 

In a simple computer, instructions usually have a fixed length and a uniform format. This 
simplifies instruction decoding and control unit design. A common instruction format includes: 

• Opcode field 

• Address field 

• Mode or control bits (if required) 

Fixed-length instruction formats make hardware implementation easier but may reduce 
flexibility. 



3. Addressing Modes 

An addressing mode specifies how the effective address of an operand is determined during 
instruction execution. Addressing modes provide flexibility in accessing operands and support 
efficient program execution. 

Common addressing modes used in a simple computer include: 

• Immediate Addressing Mode, where the operand is part of the instruction itself 

• Direct Addressing Mode, where the address field specifies the memory location of the 
operand 

• Indirect Addressing Mode, where the address field points to a memory location that 
contains the actual operand address 

• Register Addressing Mode, where the operand is located in a register 

Addressing modes influence instruction length, execution time, and programming convenience. 

4. Instruction Cycle 

The instruction cycle is the complete sequence of steps required to fetch and execute a 
single instruction. Every instruction executed by the CPU follows this cycle. 

The instruction cycle consists of the following phases: 

1. Fetch Cycle – The instruction is fetched from memory using the Program Counter. 

2. Decode Cycle – The instruction opcode is decoded to determine the required 
operation. 

3. Execute Cycle – The specified operation is performed using registers, ALU, or memory. 

4. Interrupt Check – The processor checks whether an interrupt has occurred. 

This cycle repeats continuously as long as the computer is running. 

5. Instruction Execution in Terms of Microinstructions 

Instruction execution at the hardware level is performed using microinstructions. A 
microinstruction is a low-level control instruction that specifies one or more micro-operations 
such as register transfer, ALU operation, or memory access. 

Each machine-level instruction is executed as a sequence of microinstructions stored in control 
memory or generated by control logic. These microinstructions control: 

• Data movement between registers 

• ALU operation selection 

• Memory read and write operations 

For example, an ADD instruction may involve multiple microinstructions to fetch operands, 
perform addition, and store the result. This microinstruction-based execution provides precise 
control over hardware behavior. 



6. Interrupt Cycle 

An interrupt is a signal that temporarily suspends the normal execution of a program to 
service an urgent request. The interrupt cycle is the sequence of operations performed by 
the CPU to handle an interrupt. 

When an interrupt occurs: 

1. The CPU completes the execution of the current instruction. 

2. The contents of the Program Counter and other necessary registers are saved. 

3. Control is transferred to the interrupt service routine. 

4. The interrupt service routine is executed. 

5. The saved state is restored, and normal program execution resumes. 

The interrupt cycle allows the processor to respond efficiently to external events such as I/O 
operations, hardware faults, or timer signals. 

Significance of Instruction and Addressing Concepts 

Understanding a simple computer organization and instruction set is essential because: 

• It explains how software instructions control hardware 

• It clarifies the role of registers, memory, and control logic 

• It forms the basis for instruction set architecture design 

• It helps in understanding advanced topics like pipelining and parallel execution 

Instruction Execution in Terms of Microinstructions 

At the hardware level, the execution of a machine-level instruction is carried out through a 
sequence of simpler operations known as microinstructions. A microinstruction is a low-level 
control instruction that specifies one or more micro-operations, such as data transfer between 
registers, arithmetic or logical operations, or memory access. 

Each machine instruction is decomposed into a series of microinstructions that are executed 
sequentially. These microinstructions are either generated by a hardwired control unit or stored 
in a control memory in a microprogrammed control unit. Together, the sequence of 
microinstructions corresponding to a machine instruction is called a microprogram. 

During instruction execution, microinstructions control the movement of data between 
registers, activate the Arithmetic and Logic Unit (ALU) for computation, and manage memory 
read or write operations. This approach provides precise control over hardware behavior and 
ensures that complex instructions can be executed systematically using simpler hardware 
actions. 

7. Interrupt: Concept and Need 

An interrupt is a signal that temporarily suspends the normal execution of a program to allow 
the processor to respond to an external or internal event. Interrupts are essential for efficient 



system operation because they enable the processor to react promptly to events such as input/
output requests, hardware faults, or timer expirations. 

Without interrupts, the processor would have to continuously poll devices to check their status, 
leading to inefficient use of CPU time. Interrupts allow the processor to perform useful work 
until an event requires attention. 

Interrupts can be generated by: 

• Input/output devices 

• Internal hardware conditions 

• Software instructions 

• Timer units 

Interrupt Cycle 

The interrupt cycle is the sequence of operations performed by the CPU when an interrupt 
occurs. It is an extension of the normal instruction cycle and ensures that program execution 
can be resumed correctly after servicing the interrupt. 

The interrupt cycle generally involves the following steps: 

1. The processor completes the execution of the current instruction. 

2. The contents of the Program Counter and other necessary registers are saved. 

3. The processor transfers control to a predefined memory location known as the interrupt 
service routine. 

4. The interrupt service routine is executed to handle the interrupt. 

5. The saved processor state is restored. 

6. Normal program execution resumes from the point of interruption. 

The interrupt cycle allows the processor to handle asynchronous events without losing program 
continuity. 

8. Simple Input/Output Organization 

A simple input/output (I/O) organization provides basic communication between the CPU 
and peripheral devices such as keyboards, displays, printers, and storage devices. In this 
organization, I/O devices are connected to the CPU through input and output registers. 

The CPU communicates with I/O devices using special I/O instructions. Data transfer occurs 
through I/O registers rather than directly accessing the devices. The control unit coordinates 
these operations by generating appropriate control signals. 

In a simple I/O organization, the processor may use: 

• Program-controlled I/O 

• Interrupt-driven I/O 



This approach is suitable for systems with limited I/O requirements and simple hardware 
design. 

9. Synchronous Data Transfer 

Synchronous data transfer is a method in which data transfer between two devices is 
controlled by a common clock signal. Both the sender and the receiver operate in 
synchronization with the same clock, ensuring that data is transmitted and received at 
predetermined time intervals. 

In synchronous data transfer: 

• Timing is fixed and predictable 

• No additional handshaking signals are required 

• Data transfer is fast and efficient 

However, synchronous transfer requires both devices to operate at compatible speeds, which 
limits its flexibility. 

10. Asynchronous Data Transfer 

Asynchronous data transfer is a method in which data transfer occurs without a shared 
clock signal. Instead, control signals are used to coordinate the transfer between the sender 
and the receiver. 

In asynchronous data transfer: 

• The sender and receiver operate independently 

• Handshaking signals are used to indicate readiness 

• Data transfer occurs only when both devices are ready 

This method is more flexible than synchronous transfer and is widely used in input/output 
operations where devices operate at different speeds. 

Comparison Between Synchronous and Asynchronous Data Transfer 

Synchronous data transfer offers higher speed and simpler control but requires strict timing 
coordination. Asynchronous data transfer provides greater flexibility and compatibility between 
devices but involves additional control overhead and slightly lower performance. 

11. Data Transfer Modes 

Data transfer modes define the methods by which data is transferred between the Central 
Processing Unit (CPU), main memory, and input/output (I/O) devices. Since I/O devices 
generally operate at speeds much slower than the CPU, efficient data transfer mechanisms are 
required to avoid unnecessary processor idle time. The choice of data transfer mode 
significantly affects system performance and processor utilization. 

The three primary data transfer modes are Program Controlled I/O, Interrupt-Driven I/
O, and Direct Memory Access (DMA). 



12. Program Controlled Data Transfer 

Program controlled data transfer, also known as programmed I/O, is the simplest method of 
data transfer between the CPU and I/O devices. In this mode, the CPU directly controls and 
manages all data transfer operations through a sequence of instructions. 

In program controlled I/O, the processor repeatedly checks the status of the I/O device to 
determine whether it is ready for data transfer. This process is known as polling. Once the 
device is ready, the CPU executes instructions to transfer data between the I/O device and the 
CPU registers. 

Although this method is easy to implement, it is inefficient because the CPU remains busy 
waiting for the I/O device, even when no data transfer is occurring. As a result, processor time 
is wasted, leading to poor system performance. 

13. Interrupt-Driven Data Transfer 

Interrupt-driven data transfer improves efficiency by allowing the CPU to perform other tasks 
while waiting for an I/O device. In this mode, the I/O device sends an interrupt signal to the 
processor when it is ready for data transfer. 

When an interrupt occurs, the processor temporarily suspends the execution of the current 
program, saves its state, and transfers control to an interrupt service routine (ISR). The 
ISR performs the required data transfer between the CPU and the I/O device. After completing 
the operation, the processor restores its previous state and resumes normal program 
execution. 

Interrupt-driven I/O significantly reduces CPU idle time compared to program controlled I/O. 
However, the CPU is still involved in every data transfer, which can become a limitation for 
high-speed or large-volume data transfers. 

14. Direct Memory Access (DMA) 

Direct Memory Access (DMA) is a data transfer technique that allows data to be transferred 
directly between an I/O device and main memory without continuous involvement of the CPU. 
In this mode, a special hardware component called the DMA controller manages the data 
transfer process. 

When a DMA transfer is required, the CPU initializes the DMA controller by providing the 
memory address, the direction of transfer, and the number of data units to be transferred. The 
DMA controller then takes control of the system bus and performs the data transfer directly 
between the I/O device and memory. 

Once the transfer is complete, the DMA controller generates an interrupt to notify the CPU. 
DMA greatly improves system performance by freeing the CPU from routine data transfer tasks 
and is commonly used in high-speed I/O devices such as disks and network interfaces. 

Comparison of Data Transfer Modes 

Program controlled data transfer is simple but inefficient due to continuous CPU involvement. 
Interrupt-driven data transfer improves efficiency by reducing busy waiting, but still requires 
CPU participation for each transfer. DMA provides the highest efficiency by offloading data 
transfer tasks to dedicated hardware, allowing the CPU to focus on computation. 



15. Implementation of a Processor Using Building Blocks 

The implementation of a processor using building blocks refers to the construction of a CPU by 
interconnecting fundamental digital components such as registers, multiplexers, arithmetic 
circuits, control logic, and memory interfaces. These building blocks form the datapath and 
control path of the processor. 

Datapath Components 

The datapath is responsible for data movement and processing within the processor. It consists 
of: 

• Registers for temporary storage of data and instructions 

• Arithmetic and Logic Unit (ALU) for computation 

• Buses and multiplexers for data routing 

The datapath executes micro-operations such as register transfer, arithmetic computation, and 
logical operations under the control of control signals. 

Control Unit Implementation 

The control unit coordinates the operation of the datapath by generating appropriate control 
signals. It interprets instruction opcodes, monitors status flags, and sequences micro-
operations. 

The control unit can be implemented using: 

• Hardwired control logic 

• Microprogrammed control logic 

In both cases, the control unit ensures that instructions are executed correctly and in proper 
sequence. 

Integration of Building Blocks 

The processor is formed by integrating the datapath and control unit with memory and I/O 
interfaces. Clock signals synchronize all operations, ensuring reliable data transfer and 
processing. 

This modular building-block approach simplifies processor design, improves scalability, and 
allows systematic analysis of processor behavior. 

Importance of Building Block Implementation 

Implementing a processor using building blocks: 

• Provides a clear understanding of internal CPU operation 

• Simplifies debugging and design verification 

• Forms the basis for advanced processor architectures 



UNIT 4– Memory System Design 

Memory System Design: Memory Origination, Memory Hierarchy, Main Memory (RAM/ROM 
chips), Auxiliary memory, Associative memory, Cache Memory, Virtual Memory. Assembly 
Language Programs, Assembler Directives, Pseudo Instructions, Macroinstructions, Linking and 
Loading. 

Memory System Design 

The memory system is a vital component of a computer system that stores instructions and 
data required for program execution. Memory system design focuses on organizing different 
types of memory to achieve high performance, low cost, and efficient data access. This unit 
introduces the concepts of memory hierarchy, memory organization, and performance 
improvement techniques used in modern computer systems. 

1. Memory Organization 

Memory organization refers to the way memory units are structured, addressed, 
interconnected, and accessed in a computer system. It defines how instructions and data are 
stored in memory and how efficiently they can be retrieved during program execution. 

Memory organization plays a critical role in determining system performance, as it affects 
access time, storage capacity, and cost. 

Objectives of Memory Organization 

The primary objectives of memory organization are: 

• To provide fast access to frequently used data 

• To efficiently utilize available memory resources 

• To minimize memory access delay 

• To support scalability and system expansion 

Memory Organization Parameters 

Memory organization is characterized by several important parameters: 

• Word Length 
The number of bits that the processor can handle at one time. 

• Addressability 
Defines whether memory is byte-addressable or word-addressable. 

• Access Time 
The time required to read or write data from memory. 

• Memory Capacity 
The total amount of data that can be stored. 

Example 

In a 32-bit system with byte-addressable memory, each memory location stores 8 bits, but the 
CPU processes 32 bits at a time. 



2. Memory Hierarchy 

Memory hierarchy is an arrangement of different types of memory in a computer system based 
on speed, capacity, cost, and proximity to the CPU. Since no single memory type can satisfy all 
requirements, multiple memory levels are organized hierarchically. 

Levels of Memory Hierarchy 

The memory hierarchy typically consists of the following levels: 

1. Registers 
Fastest memory, located inside the CPU, very small in size. 

2. Cache Memory 
High-speed memory placed between CPU and main memory. 

3. Main Memory 
Stores active programs and data. 

4. Auxiliary Memory 
Provides permanent storage for large volumes of data. 

Principle of Locality of Reference 

The effectiveness of memory hierarchy relies on the principle of locality: 

• Temporal Locality 
Recently accessed data is likely to be accessed again soon. 

• Spatial Locality 
Data located near recently accessed data is likely to be accessed. 

Example 

Loop variables are repeatedly accessed and therefore remain in cache memory. 

3. Main Memory 

Main memory is the primary storage directly accessed by the CPU during instruction execution. 
It stores currently running programs, data, and intermediate results. 

Main memory is typically implemented using semiconductor memory chips and is volatile in 
nature. 

3.1 Random Access Memory (RAM) 

Random Access Memory (RAM) is a volatile memory that allows data to be read or written at 
any location with equal access time. 

Types of RAM 

Static RAM (SRAM) 



• Stores data using flip-flops 

• Does not require refreshing 

• Very fast access time 

• Expensive and low density 

• Used in cache memory 

Dynamic RAM (DRAM) 

• Stores data as electric charge in capacitors 

• Requires periodic refreshing 

• Slower than SRAM 

• High storage density 

• Used as main memory 

Example 

System RAM in personal computers is implemented using DRAM chips. 

3.2 Read Only Memory (ROM) 

Read Only Memory (ROM) is a non-volatile memory that stores permanent data and programs 
required for system initialization. 

Types of ROM 

• PROM (Programmable ROM) – Can be programmed once 

• EPROM (Erasable PROM) – Erased using ultraviolet light 

• EEPROM (Electrically Erasable PROM) – Electrically erasable 

• Flash Memory – Faster and widely used EEPROM variant 

Example 

BIOS firmware is stored in ROM. 

4. Auxiliary Memory 

Auxiliary memory, also known as secondary storage, provides permanent storage for large 
amounts of data and programs. 

Characteristics of Auxiliary Memory 



• Non-volatile 

• Large storage capacity 

• Low cost per bit 

• Slower than main memory 

Types of Auxiliary Memory 

• Hard disk drives 

• Solid state drives 

• Magnetic tapes 

• Optical disks 

Example 

Operating systems and user files are stored on hard disks or SSDs. 

5. Associative Memory (Content Addressable Memory) 

Associative memory is a special type of memory that retrieves stored data based on content 
rather than memory address. It is also known as Content Addressable Memory (CAM). 

Working Principle 

All memory entries are searched simultaneously in parallel. If the input data matches stored 
content, the corresponding memory location is accessed. 

Advantages 

• Extremely fast searching 

• Parallel comparison of entries 

Limitations 

• High cost 

• Complex hardware design 

• Limited storage capacity 

Applications 

• Cache tag comparison 

• Translation Lookaside Buffer (TLB) in virtual memory 



6. Cache Memory 

Cache memory is a small, high-speed memory placed between the CPU and main memory to 
reduce average memory access time. 

Working of Cache Memory 

When the CPU requests data: 

• Cache Hit occurs if data is found in cache 

• Cache Miss occurs if data is not found and must be fetched from main memory 

Types of Cache Memory 

• Level 1 (L1) – Located inside CPU, fastest 

• Level 2 (L2) – Larger and slightly slower 

• Level 3 (L3) – Shared among multiple cores 

Cache Mapping Techniques 

• Direct mapping 

• Associative mapping 

• Set-associative mapping 

Example 

Instruction cache stores frequently executed instructions. 

7. Virtual Memory 

Virtual memory is a memory management technique that allows programs larger than physical 
main memory to be executed by using auxiliary memory as an extension of main memory. 

Concept of Virtual Memory 

• Programs are divided into fixed-size blocks called pages 

• Only required pages are loaded into main memory 

• Remaining pages stay on secondary storage 

Key Terms 

• Page – Fixed-size memory block 



• Page Table – Maps virtual addresses to physical addresses 

• Page Fault – Occurs when required page is not in main memory 

Advantages 

• Efficient use of memory 

• Supports multitasking 

• Allows execution of large programs 

Disadvantages 

• Slower access during page faults 

• Requires complex hardware and OS support 

Example 

Modern operating systems use paging-based virtual memory. 

8. Assembly Language Programs 

Assembly language is a low-level programming language that provides a symbolic 
representation of machine-level instructions. An assembly language program consists of a 
sequence of instructions written using mnemonics, symbolic addresses, and labels that are 
easier for humans to understand compared to binary machine code. 

Each assembly language instruction corresponds directly to a machine instruction, making 
assembly language machine-dependent. Assembly language programs provide greater 
control over hardware resources and are commonly used in system programming, embedded 
systems, and performance-critical applications. 

Structure of an Assembly Language Program 

An assembly language program typically consists of the following components: 

• Label Field – Used to define symbolic names for memory locations 

• Opcode Field – Specifies the operation to be performed 

• Operand Field – Specifies registers, memory locations, or constants 

• Comment Field – Provides explanatory remarks for the programmer 

Example 

START:  MOV R1, R2   ; Move data from R2 to R1 
        ADD R1, R3   ; Add contents of R3 to R1 
        END 
In this example, symbolic instructions are used instead of machine code, making the program 
easier to read and maintain. 



Advantages of Assembly Language Programs 

• Efficient use of hardware 

• Faster execution compared to high-level languages 

• Precise control over memory and registers 

Limitations 

• Machine dependent 

• Difficult to write and debug 

• Poor portability 

9. Assembler Directives 

Assembler directives are special instructions provided to the assembler that do not generate 
machine code. Instead, they guide the assembler during the assembly process by defining 
data, reserving memory, or controlling program structure. 

Assembler directives are also known as assembler commands. 

Common Assembler Directives 

• START – Specifies the starting address of the program 

• END – Indicates the end of the assembly program 

• ORG – Sets the origin (starting address) for subsequent instructions 

• EQU – Assigns a constant value to a symbol 

• DB / DW – Define byte or define word 

Example 

NUM  EQU  10 
DATA DB   25 
Here, EQU assigns a constant value, and DB allocates memory for data. 

Purpose of Assembler Directives 

• Control memory allocation 

• Define constants and data structures 

• Organize program layout 

• Assist in symbol resolution 



10. Pseudo Instructions 

Pseudo instructions are instructions that appear like machine instructions but are not 
directly translated into machine code. They are used to simplify programming and improve 
readability. 

Pseudo instructions are handled by the assembler and may expand into one or more actual 
machine instructions. 

Characteristics of Pseudo Instructions 

• Do not represent real CPU instructions 

• Converted internally by the assembler 

• Improve program clarity 

Example 

MOVE R1, R2 
The assembler may translate this into multiple machine instructions depending on the 
architecture. 

Difference Between Machine Instructions and Pseudo Instructions 

Machine instructions are executed directly by hardware, whereas pseudo instructions are 
translated by the assembler before execution. 

11. Macroinstructions 

A macroinstruction (or macro) is a user-defined sequence of assembly instructions that 
can be invoked using a single macro name. Macros help reduce repetitive code and improve 
program maintainability. 

A macro is expanded by the assembler during assembly time. 

Structure of a Macro 

• Macro definition – Specifies the macro name and body 

• Macro invocation – Uses the macro name within the program 

Example 

MACRO INCR 
ADD R1, #1 
ENDM 
Using INCR in the program will expand into ADD R1, #1. 

Advantages of Macros 



• Reduces code duplication 

• Improves program readability 

• Simplifies modification 

Disadvantages 

• Increases program size due to expansion 

• Difficult to debug expanded code 

12. Linking 

Linking is the process of combining multiple object programs into a single executable program. 
A linker resolves symbolic references between different modules and assigns final memory 
addresses. 

Functions of a Linker 

• Combines object files 

• Resolves external references 

• Relocates code and data 

• Produces executable file 

Types of Linking 

• Static Linking – All library routines are included at compile time 

• Dynamic Linking – Libraries are linked at runtime 

Example 

If one module defines a function and another module uses it, the linker resolves this 
dependency. 

13. Loading 

Loading is the process of placing an executable program into main memory for execution. A 
loader allocates memory and initializes program execution. 

Functions of a Loader 

• Allocate memory 

• Load program into memory 

• Perform relocation 



• Start program execution 

Types of Loaders 

• Absolute Loader – Loads program at fixed address 

• Relocating Loader – Adjusts addresses during loading 

• Dynamic Loader – Loads routines as needed 

Relationship Between Assembler, Linker, and Loader 

• Assembler converts assembly code into object code 

• Linker combines object files into executable code 

• Loader loads the executable into memory for execution 

Together, these system programs enable translation and execution of assembly language 
programs. 



UNIT 5– Vector and Array Processing & Microprocessor Concepts 

Vector and Array Processing: Shared-Memory, Multiprocessing, Distributed Mufti 
Computing. 

Microprocessor Concepts: Pin Diagram of 8085, Architecture of 8085, Addressing 
Mode of 8085, functional block diagram of 8085 assembly language, instruction set of 
8085. 

Introduction to Vector and Array Processing 

Modern computing applications such as scientific simulations, image processing, weather 
forecasting, machine learning, and big data analytics require the execution of a large number 
of similar operations on large sets of data. To meet these performance demands, computer 
systems use vector and array processing techniques, which allow multiple data elements 
to be processed simultaneously. 

Vector and array processing exploit parallelism at the data level, where the same operation is 
applied to multiple data elements at the same time. This unit discusses the principles of vector 
and array processing and examines different parallel computing models such as shared-
memory systems, multiprocessing systems, and distributed multi-computing systems. 

1. Vector Processing 

Vector processing is a computing technique in which a single instruction operates on a vector, 
which is a sequence of data elements. Instead of processing one data element at a time, 
vector processors handle multiple elements in parallel, significantly improving execution speed. 

Characteristics of Vector Processing 

• Operates on one-dimensional arrays called vectors 

• Uses vector instructions instead of scalar instructions 

• Reduces instruction fetch and decode overhead 

• Achieves high performance for repetitive computations 

Vector Instructions 

Vector instructions specify: 

• The operation to be performed (addition, multiplication, etc.) 

• The source vectors 

• The destination vector 

For example, a single vector addition instruction can add two vectors element by element. 

Advantages of Vector Processing 



• High computational throughput 

• Efficient use of hardware resources 

• Suitable for scientific and numerical applications 

Limitations 

• Less effective for irregular data structures 

• Requires large memory bandwidth 

• Not suitable for control-intensive programs 

2. Array Processing 

Array processing is a parallel computing technique in which a large number of processing 
elements operate simultaneously on different elements of an array. Each processing element 
performs the same operation on different data, following the Single Instruction Multiple 
Data (SIMD) model. 

Characteristics of Array Processing 

• Uses multiple processing units 

• Executes the same instruction across all processors 

• High degree of parallelism 

• Often implemented using processor arrays 

Applications of Array Processing 

• Image and signal processing 

• Matrix computations 

• Pattern recognition 

• Scientific simulations 

3. Shared-Memory Systems 

A shared-memory system is a parallel computing architecture in which multiple processors 
share a common memory address space. All processors can directly access and modify shared 
data. 

Working Principle 

In shared-memory systems: 

• Processors communicate by reading and writing shared variables 



• Synchronization mechanisms are required to avoid data conflicts 

• Memory access time may vary depending on architecture 

Types of Shared-Memory Architectures 

• Uniform Memory Access (UMA) 
All processors have equal access time to memory. 

• Non-Uniform Memory Access (NUMA) 
Memory access time depends on the memory location relative to the processor. 

Advantages 

• Easy communication between processors 

• Simplified programming model 

• Efficient data sharing 

Disadvantages 

• Memory contention 

• Scalability limitations 

• Synchronization overhead 

4. Multiprocessing 

Multiprocessing refers to the use of two or more processors within a single computer system to 
execute multiple processes simultaneously. Each processor operates independently but 
cooperates with others to improve overall system performance. 

Types of Multiprocessing 

• Symmetric Multiprocessing (SMP) 
All processors are equal and share the same memory and operating system. 

• Asymmetric Multiprocessing (AMP) 
One processor controls the system, while others perform specific tasks. 

Benefits of Multiprocessing 

• Increased throughput 

• Better resource utilization 

• Improved system reliability 

Challenges 



• Process synchronization 

• Load balancing 

• Memory access conflicts 

5. Distributed Multi Computing 

Distributed multi computing is a computing model in which multiple independent computers, 
connected through a network, work together to solve a problem. Each computer has its own 
local memory and processing resources. 

Characteristics of Distributed Computing 

• No shared memory 

• Communication through message passing 

• High scalability 

• Fault tolerance 

Working Mechanism 

In distributed systems: 

• Tasks are divided among multiple nodes 

• Nodes communicate using messages 

• Each node executes its assigned task independently 

Advantages of Distributed Computing 

• Highly scalable 

• Cost-effective using commodity hardware 

• Suitable for large-scale problems 

Limitations 

• Communication latency 

• Complex programming model 

• Data consistency challenges 

6. Comparison of Shared-Memory and Distributed Systems 

Shared-memory systems provide faster communication through shared variables but face 
scalability issues. Distributed systems scale efficiently and provide fault tolerance but incur 
communication overhead due to message passing. 



7. Importance of Vector and Parallel Processing 

Vector and parallel processing techniques: 

• Improve computational performance 

• Enable handling of large data sets 

• Support modern high-performance applications 

MICROPROCESSOR CONCEPTS – INTEL 8085 

1. Introduction to Microprocessor 

A microprocessor is a programmable digital device that performs arithmetic, logical, and 
control operations on binary data. It acts as the central processing unit (CPU) of a 
computer system and executes instructions stored in memory. The Intel 8085 is an 8-bit 
microprocessor widely used for educational purposes to explain fundamental microprocessor 
concepts due to its simple architecture and instruction set. 

The 8085 operates on 8-bit data, has a 16-bit address bus, and can address up to 64 KB of 
memory. 

2. Pin Diagram of 8085 

Explanation 

The Intel 8085 is packaged in a 40-pin Dual 
In-Line Package (DIP). Each pin has a 
specific function and can be grouped based on 
functionality. 

Pin Groups and Their Functions 

1. Address/Data Bus (AD0–AD7) 
These pins are multiplexed. They carry 
the lower 8 bits of the address during the 
f irst clock cycle and data during 
subsequent cycles. 

2. Address Bus (A8–A15) 
These pins carry the higher 8 bits of the 16-bit address and are unidirectional. 

3. Control and Status Signals 

◦ RD: Read signal 

◦ WR: Write signal 

◦ IO/M: Selects memory or I/O operation 



4. Interrupt Pins 

◦ TRAP (non-maskable, highest priority) 

◦ RST 7.5, RST 6.5, RST 5.5 (maskable interrupts) 

◦ INTR (general interrupt) 

5. Power and Clock Pins 

◦ Vcc and GND supply power 

◦ X1, X2 provide clock input 

The pin diagram defines how the microprocessor communicates with memory, I/O devices, and 
external hardware. 

3. Architecture of 8085 

Overview 

The architecture of the 8085 describes its internal organization and interconnection of 
functional units. It follows a Von Neumann architecture, where both data and instructions 
share the same memory. 

Main Components of 8085 Architecture 

1. Arithmetic and Logic Unit (ALU) 

The ALU performs arithmetic operations (addition, subtraction) and logical operations (AND, 
OR, XOR, comparison). 



2. Accumulator (A) 

An 8-bit register used to store operands and results of ALU operations. 

3. Register Array 

Includes six general-purpose registers: B, C, D, E, H, L, which can be paired as BC, DE, and 
HL. 

4. Program Counter (PC) 

A 16-bit register that stores the address of the next instruction to be executed. 

5. Stack Pointer (SP) 

A 16-bit register that points to the top of the stack in memory. 

6. Instruction Register and Decoder 

Stores the fetched instruction and decodes it to generate control signals. 

7. Timing and Control Unit 

Generates timing and control signals required for instruction execution. 

4. Addressing Modes of 8085 

Definition 

An addressing mode specifies the method by which the operand of an instruction is accessed. 

Types of Addressing Modes 

1. Immediate Addressing Mode 

The operand is specified directly in the instruction. 
Example: MVI A, 05H 

2. Register Addressing Mode 

The operand is stored in a register. 
Example: MOV A, B 

3. Direct Addressing Mode 

The memory address of the operand is given in the instruction. 
Example: LDA 2050H 

4. Indirect Addressing Mode 

The address of the operand is stored in a register pair. 
Example: MOV A, M 



5. Implied Addressing Mode 

The operand is implied by the instruction itself. 
Example: CMA 

Addressing modes provide flexibility in accessing data efficiently. 

5. Functional Block Diagram of 8085 

The functional block diagram of the Intel 8085 microprocessor represents the logical 
organization of its internal units and explains how these units cooperate to execute 
instructions. Instead of focusing only on physical layout, this diagram emphasizes the 
functional interaction among different blocks during instruction execution and data 
processing. 

The internal structure of the 8085 can be broadly divided into three major functional groups: 
Data Path Blocks, Control Path Blocks, and Interface Blocks. Each group performs a 
specific role in the overall operation of the microprocessor. 

Data Path Blocks 

The data path blocks are responsible for the movement, storage, and processing of data 
inside the microprocessor. These blocks form the core computation mechanism of the 8085. 

The data path includes the register array, the accumulator, the Arithmetic and Logic Unit 
(ALU), and the internal data buses. The general-purpose registers store temporary data, 
operands, and intermediate results. The accumulator acts as a central register that holds 
operands and results of most arithmetic and logical operations. 

The ALU performs arithmetic operations such as addition and subtraction, as well as logical 
operations such as AND, OR, XOR, and comparison. Internal buses provide communication 



paths between registers, the ALU, and other internal blocks, ensuring smooth data transfer 
within the processor. 

Control Path Blocks 

The control path blocks manage and coordinate the execution of instructions. These blocks 
generate the necessary control signals that regulate data movement and processing. 

The control path includes the Instruction Register, Instruction Decoder, and the Timing 
and Control Unit. The instruction register temporarily holds the fetched instruction, while the 
instruction decoder interprets the opcode to determine the type of operation to be performed. 

The timing and control unit generates precise timing signals and control signals required for 
instruction execution. It synchronizes all micro-operations with the system clock and ensures 
that each step of instruction execution occurs in the correct sequence. 

Interface Blocks 

The interface blocks enable communication between the microprocessor and the external 
world, including memory and input/output devices. 

These blocks consist of the address buffer, data buffer, and control signals such as RD, 
WR, and IO/M. The address buffer outputs the memory or I/O address, while the data buffer 
handles the transfer of data between the microprocessor and external devices. 

Through these interface blocks, the 8085 can read instructions and data from memory, write 
results back to memory, and exchange information with I/O devices. 

Overall Significance of the Functional Block Diagram 

The functional block diagram provides a clear understanding of how instructions flow 
through the microprocessor, starting from instruction fetch, decoding, execution, and finally 
storing the result. It also explains how data is processed internally and how control signals 
coordinate all activities. 

By studying this diagram, one can understand the complete working mechanism of the 8085 
microprocessor, including the interaction between computation units, control logic, and 
external interfaces. This makes the functional block diagram an essential tool for learning 
microprocessor architecture and operation. 

6. Assembly Language of Intel 8085 

Assembly language is a low-level programming language specifically designed to program a 
particular microprocessor. In the case of the Intel 8085, assembly language uses mnemonics 
to represent machine-level instructions in a symbolic and human-readable form. Each 
assembly language instruction corresponds exactly to a single machine code instruction of 
the 8085 microprocessor. 

Assembly language provides a direct interface between software and hardware, allowing 
programmers to control registers, memory locations, and I/O devices explicitly. 

Characteristics of 8085 Assembly Language 

1. Machine Dependent 



Assembly language programs written for the 8085 are not portable. They are designed 
specifically for the 8085 architecture and cannot be executed on other microprocessors without 
modification. This is because mnemonics, registers, and instruction formats are unique to the 
8085. 

2. One-to-One Correspondence with Machine Instructions 

Each assembly instruction translates into a single machine instruction. This one-to-one 
correspondence ensures precise control over hardware operations and predictable execution 
behavior. 

For example: 

ADD B 
is translated directly into the corresponding machine opcode for addition. 

3. Use of Mnemonics 

Mnemonics are abbreviated symbolic names used to represent machine instructions. They 
make programs easier to read, write, and debug compared to binary machine code. 

Examples of mnemonics include: 

• MOV for data transfer 

• ADD for addition 

• JMP for unconditional jump 

4. Use of Symbolic Names and Labels 

Assembly language allows the use of labels and symbolic names to represent memory 
addresses. This improves program readability and simplifies modification, as the programmer 
does not need to remember absolute memory addresses. 

5. Efficient and Fast Execution 

Since assembly language instructions correspond directly to machine instructions, programs 
written in assembly language execute faster and use memory efficiently. This makes assembly 
language suitable for real-time systems and performance-critical applications. 

Structure of an Assembly Language Instruction 

An assembly instruction for the 8085 follows a fixed format: 

LABEL: OPCODE OPERAND ; COMMENT 
Explanation of Fields 

• Label 
A symbolic name representing a memory location. It is optional and used mainly in 
branching instructions. 

• Opcode 
The mnemonic that specifies the operation to be performed by the microprocessor. 



• Operand 
Specifies the data, register, or memory location involved in the operation. 

• Comment 
A non-executable part of the instruction used to describe the purpose of the instruction. 

Example 

MOV A, B ; Copy contents of register B into accumulator A 
This instruction transfers the contents of register B into the accumulator. 

Advantages of Assembly Language 

• Precise control over hardware 

• Efficient use of memory and CPU resources 

• Fast execution speed 

Limitations of Assembly Language 

• Difficult to write and debug 

• Machine dependent 

• Large program size for complex applications 

7. Instruction Set of Intel 8085 

The instruction set of the Intel 8085 is the complete collection of machine-level instructions 
that the microprocessor can execute. These instructions define the functional capabilities of the 
8085 and determine how it performs data processing, logical operations, program control, and 
system management. 

Classification of Instructions 

The instruction set of the 8085 is classified into several groups based on their functionality. 

1. Data Transfer Instructions 

Data transfer instructions are used to move data between registers, between memory and 
registers, and between the microprocessor and I/O devices. These instructions do not alter 
the content of the source, except in specific operations. 

Common Data Transfer Instructions 

• MOV – Transfer data between registers or between register and memory 

• MVI – Move immediate data to a register or memory 

• LDA – Load accumulator directly from memory 

• STA – Store accumulator directly into memory 



Example 

MVI A, 05H 

Loads the hexadecimal value 05 into the accumulator. 

2. Arithmetic Instructions 

Arithmetic instructions perform mathematical operations on binary data. Most arithmetic 
operations are performed using the accumulator and affect status flags such as Zero, Carry, 
Sign, and Parity. 

Common Arithmetic Instructions 

• ADD – Add register or memory content to accumulator 

• SUB – Subtract register or memory content from accumulator 

• INR – Increment register or memory by one 

• DCR – Decrement register or memory by one 

Example 

ADD B 

Adds the contents of register B to the accumulator. 

3. Logical Instructions 

Logical instructions perform bitwise logical operations and comparisons. These instructions are 
used for masking, testing bits, and implementing decision-making logic. 

Common Logical Instructions 

• ANA – Logical AND operation 

• ORA – Logical OR operation 

• XRA – Logical Exclusive OR operation 

• CMA – Complement accumulator 

Example 

ANA C 

Performs a logical AND between accumulator and register C. 

4. Branching Instructions 

Branching instructions are used to alter the normal sequence of program execution. These 
instructions enable conditional and unconditional jumps, subroutine calls, and returns. 

Common Branching Instructions 



• JMP – Unconditional jump 

• JZ – Jump if Zero flag is set 

• CALL – Call a subroutine 

• RET – Return from subroutine 

Example 

JZ LOOP 

Transfers control to label LOOP if the Zero flag is set. 

5. Machine Control Instructions 

Machine control instructions control the overall operation of the microprocessor. These 
instructions manage processor states such as halt, interrupt enable, and disable. 

Common Machine Control Instructions 

• HLT – Halt program execution 

• NOP – No operation 

• EI – Enable interrupts 

• DI – Disable interrupts 

Example 

HLT 

Stops program execution until an interrupt or reset occurs. 

Importance of the Instruction Set 

The instruction set enables the 8085 microprocessor to: 

• Perform data manipulation 

• Control program flow 

• Handle interrupts and system operations


